C Reference Manual

ND-860251EN2

.

Scanned by Jonny Oddene for Sintran Data © 2011

C Reference Manual

ND-860251EN2

Scanned by Jonny Oddene for Sintran Data © 2011

C Reference Manual

NOTE:
The numbering system for Norsk Data’s documentation changed in September 1988. All

numbers now start with an 8. The numbering structure is therefore ND-8xxxxx.XX xx.
Example. ND-863018.34 EN. Existing manuals will receive a new number if and when they

are updated or revised.

The information in this manual is subject to change without notice.
Norsk Data A.S assumes no responsibility for any errors that may appear in this manual, or
Jor the use or reliability of its software on equipment that is not furnished or supported by

Norsk Data A.S.

Copyright 1990 by Norsk Data A.S Version 1 March 1987
Version 2. January 1990

Scanned by Jonny Oddene for Sintran Data © 2011

p 4
re e

Norsk Data GmbH MANUAL

C REFERENCE MANUAL

Dokumentation ND Milheim
29 November 1989

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

PREFACE

the product

the reader

prerequisite knowledge

Product Name Product Number
C for ND-500 211149

The programming language C is one of today's most popu-
lar programming languages supporting many types of
applications on a variety of different computers. C was
originally designed by Brian W. Kernighan and Dennis M.
Ritchie as the system programming language for the deve-
lopment of the UNIX® operating system. Nowadays, C has
proven equally well suited for commercial, technical and
scientific applications. The concept for modular pro-
gramming, efficient language constructs and an extensive
runtime system support are the keys to its success.

In order to provide a high degree of compatibility with
other systems, the C language implemented by Norsk Data
conforms to the specification described in "The C Pro-
gramming Language" by Kernighan and Ritchie, which is
generally regarded as C 'Standard'. The Norsk Data im-
plementation offers useful language extensions and
library support for many UNIX system functions as well
as a good integration into the SINTRAN environment
(symbolic debug and interfaces to SIBAS, ISAM, FOCUS and
Monitor Calls).

This manual is intended for experienced programmers with
or without knowledge of the C programming language.

The reader must have a basic knowledge of data pro-
cessing and should also have some knowledge of the
SINTRAN III operating system. Familiarity with C or a
similar programming language, like PASCAL or PL/1, would
be helpful.

® UNIX is a Trademark of Bell Laboratories.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

the manual In this manual you will find the description of the C
language as it 1s implemented on the ND-500 machine.
Furthermore, this manual contains descriptions of':

e C library functions including UNIX system calls,

e the interfaces to the Monitor Call, ISAM, SIBAS and
FOCUS libraries.

related manuals SINTRAN III Reference Manual............... ND-60.128
SINTRAN III Time Sharing/Batch Guide....... ND-60.132
SINTRAN III Monitor CallS.......eveeevnenn. ND-60.288
SINTRAN III Real Time Loader............... ND-60.051
PED Editor: PED User Guide.........vevvenn. ND-60.121
ND-500 Loader/Monitor......c.veervnueanenn. ND-60.136
ND-500 Reference Manual.............0c00... ND-05.009
Symbolic Debugger User Guide............... ND-60.158
ND ISAM Reference Manualcv0.... ND-60.108
SIBAS II User Manualcveveennenennns ND-60.127
FOCUS Screen Handling System Ref. Manual...ND-60.137
CAT-Profile....criiiiinnereneenoreennonnnse ND-860307

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

EEEDEEEEEEEE

<i>

TABLE OF CONTENTS

1 Introduction

A General Qverview — — — — — — —m —m = — — — — = — — -~ —— — —
A Simple C Program — — — — — = — = — = - — - —— ——

2 Basic Elements

Character Set — = = = = = = - - .~ . —— ——— —
Keywords — — — — = — — = = = — = — — . e . - — - — - ——— —
Identifiers = == = == == =@ @ = = @ = - - — - —— e —————
CONSLANES = — — — = = — = - - - - e ———— -
Comments — — = — = = — = = = . - e - = —

3 Data Types

Simple TypeS = — — = — = —m = — = — — — - - ——— — — — — —
Implicit Type Conversions =— — — —— = = =« — — = —— — — ——
Composed Types and Pointers — — —— — — — — — - — — — — — — — —~
Arrays = — == = =@ — — = - — ————
SEPUCLUrES — — — — — == = = = = = . ————— o — — —
UnioNg — = = = = + e e - - —————— - -
Pointers — == = - 0 m e e e e . e — - -~
FUNCLions = = = = &= = = =t e o e e e - —— - —

. Type Definitiong — - — = — — — =~ -+t 0 . ——— —
Type NEMES = — — = = = — = = e e e e e - ———
Explicit Type Conversions — — —m = = = = = = = = = = = = == — —

4 Declaration and Initialisation of Variables

Storage Classes — ———= === - m c C m - ————
Declarations — — — = — & = = = = - = — — e ———— — = — - —
Extern Specification — — — — = — = = - - m - ——— — - -
Initialisations — — = - = = - i mF m et _ - — e _m_m - —_—— — —
Initialisation of Arrays —— — = == = @ == — - = = = = =
Initialisation of Structures =— — — = = = = = == = = = = — — —
Initialisation of Pointers = = = = = m - i - = = = = = — — —

5 Arrays and Pointers

Relationship Arrays ~ Pointers — — — — = = = = = = = - = — — = ~
Pointer Arithmetic — — — — = = —m = - — — ;- —-—— - -
Pointer Arrays =— = = = = = = — = m o = = . ————— — — —

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

]
[

[[L
WO oo~ ononTw

t WWWWLWWWWW w
]

fary
[y

< 4i >

6 Functions 6-1
Syntax of a Function — — — — = = — = = — — — - — = — — =~ — — — 6-3
Parameters =— — = = — = = = = - = — —_——_—— . — . — — - — — — — 6-5
Return Value — — — — — — = — — — — = ~ = - —— —— — ——— — — 6-6
Recursion —— — == —— == & &~ — e — — - ——— 6-8

7 Operators and Expressions 7-1
Operators — —— == = = = = — - e, — e ——— - — 7-3

Arithmetic Operators —— e e e - 7-3
Increment and Decrement Operators =— — — = — =« = = = = — = — — 7-4
Relational Operators — —— — = — — — - = = — = = = — — — — — 7-5
Logical Operators — — — = = = = = — = — — = = = = = — = — — — 7-5
Bitwise Logical Operators =— — — — = = — — = = = = — = — — ~ — 7-6
Assignment Operators — —— — — — ==~ — = = = — — - - — — —~ 7-7
Conditional Operator ——————— = — —f - - — — - — — — — — 7-9
Sizeof Operator — — — = = = = = = ~ — — -~ — — ——— — — —— 7-9
Comma Operator — — ——— === —— = — & - = — — — - — — — — 7-10
Associativity and Priority of Operators — — — —~ — ——=—— — — 7-10
EXPrESSiONS = — = = = m m = - - — 7-13

8 Program Structure and Control Flow 8-1
Program SLrUCLUre — — — — = = = — — = == — — = = = — — — — — — 8-3
Expression Statement — — — =~ = — — = — — - — ~ —~ — - = — — — — — 8-3
If Statement — — — = — = m = — . —_—— e —————— -~ 8-4
Switch Statement = — — = = = = = = - —— . —— - ————— — 8-5
Loops — == — m m e e m e e e — - - — - 8-6

While Statement =~ — — = = = — — = = - — - ~ — — —— - — - - — 8-6
Do Statement — — = = = = = = - ——— e o m — _——— e —— — — 8-7
For Statement — — = — — = = —~ — — = — — — =~ — — — - — — —~ — 8-7
Break Statement — — = = = = =~ & & &~ - ———— 8-8
Continue Statement = —— — = - = — — = — — — — - — — — — — — —~ — 8-9
Goto Statement — — — = — = — — = — - - — - — - -~ 8-9
Syntax of a Statement — = — — — == — — — = — = — —— — — 8-10

9 The C Preprocessor 9-1
Preprocessor Commands —— == == == == =« = = = = = = = = — 9-3
Macros — —— == ——c c m e e e e, ———m———— 9-3
File Inclusion — — — = —m —m — - — — & — e s - - ——— 9-6
Conditional Compilation — == — — = = - — — = 00 m - — — — 9-8
Line Control — —— = == —m — - - m e e — e —— — —— - 9-10
Page Skip — —— =~ ———=— - —m — - e e e e e e —— - — —~ 9-10
Predefined Macros — == == - - - e e - — 9-11

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

< iii >

10 Extensions for System Programming

Monitor Calls and Machine Instructions =— = —= = — — — — — — — — —
Register Varigbles — — — — — — = — = = = = — - — = — — — — — — —
Stack initialisation — = =« - -t m m m m e —-—-——————

11 Compiling and Linking

Conflicts between C source file names and routine names —_———
Compiler Invocation — —— — —— =« - — — e o = -~ - — —
Compiling a Program =— — = ~ — — = = = = = « = = = = = — = = — —
PreproCess = = — — — — = = — = = = = = — = = = - ——— - - —
Check Source Code —m —m = = = = —m mm m m c s e ——— - ——
Generate Code = — = = — e e e e e _-—-——— - —
Compile —————~ = m e e e e —— - - - ——
Compile and Link ——— = = = —m = = = — e e — e — — — - - —
Source File Listing —— === = -~ = — — — - — — — — —
Compile Parameters =— — — — = = — — — — — — = = — — — — —~ — — — —~
Definitions — = — = —m —m~c m m e e - e e, — - - —
Options — = —m e = = - e e e e e e e _ e - =~
Libraries — — = = —m = m = - et .t e —— —— - ———
Initialise the User Interface — —— = = = = — — = - = = = — —
COMMENES = — == = — = = e o e = e = = —— . ———
SINTRAN commands — — — —m —m — = = =~ m e e - e - - = —
Linking a Progrem == == —— — =~ - — = — — — — — — —

12 The Command Line

General — — == F e e e —— — - = -
Command line interpretation == — = — = = = - — = = = = — — — —
Continuation 1lines = — = = = = m e d c d - — - - - - -
Execute command after termination — — = = = — = = - = — — — ~
Redirection of standard I/ - = = — — = m e — — - = = — =
Parameter fileS = = = = o - - m . - - — - - —
Program parameters — — — — — — = = = = — — = —— — — — ——_—— —

13 C Library Functions

General — — — - - - m e e - - — -
Header Files = = === - v e e e e e e e e m e e e = —
Standard File§ — = —m —m —m = —m — e e e e ——— —————
File Names — = = = — & — — m e _ e e - e m - - —— - - —
Notation —— e —m et e e e e e e e m = —
Error Handling —— — - = = — — — — = m — e — o e - — —

Basic FUnctions == == = = =@~ a e e e e - —— —
Basic I/0 = = = - e e e e e e e e e e e
Other Basic Functions = — = = = = = — — — = o — - — —

Examples of BASIC-I/0 — = = = = = m e e e m e e e — - — —

Standard Functions — — — = —m —m = —m — - - ——_-—
Formatted I/0 — — — — = = — = m e e e e - =
Storage Allocation — — = = = = - @ & & - ——— -~ — —

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

11-9

< iv >

Memory Functions — == cc e e - — = — - 13-71
Global Jumps — — — = = =~ = = = =~ - - — — - ———— — — 13-73
String Functions = - - c et =~ - = 13-75
Character Functions — —— — — — = = = — — — — = — — — — — — — 13-83
Conversion Functions — = —— = —— = @ - c e r — — — — — — — 13-86
Mathematical Functions —— = = = = - = - - - = — ~ — — — — 13-90
Other Standard Functions ———— === = @ = = = = — = — 13-101

14 Language interfacing 14-1
Variable sizes in different languages — — = = = = — = — — = = — 14-4
General rule§ — = === - — — -~ " m — - —— - ——— — 14-5
Interfacing C and FORTRAN —— === - — — - = o — — — — — = ~ 14-6
Export / import of integer variables — — ——————— - —— 14-7
Integer variables as parameters — — — =~ — — — — = — — — — — 14-7
Export / import of real variables — — — — — = = — — — — — — —~ 14-8
Real variables as parameters = — — — = == @« = = = — — — — — 14-9
Export / import of integer arrays — — — — — — — — — — — — — — 14-10
Integer arrays as parameters — — — — =~ = = —— - — - —— - 14-11
Export / import of char arrays — ———=— == —— == = — = — 14-12
Char arrays as parameters — — — — — = = = = = = — = - — — — - 14-13
Export / import of structs ————— = — = - = — = = = — — 14-14
Mode file to generate a C / FORTRAN program on ND-500 — — — — 14-16
Interfacing C and PLANC — =~ —— — — - m e e e e = = — — — — — 14-17
Export / import of integer variables — —— —~—— = — ——— 14-18
Integer variables as parameters (standard) — == —— = ——— 14-19
Integer variables as parameters (non standard) ——————— 14-20
Export / import of real variables — — - — — — — — =~ — — — — 14-21
Real variables as parameters (standard) — — — — = = = — — — — 14-22
Real variables as parameters (non standard) = — — — — = = —— 14-23
Export / import of integer 8rrays — = — — — — = — — — — — — — 14-24
Integer arrays as parameters (standard) — — = —— == — — — — 14-25
Integer arrays as parameters (non standard) —— — = ——— — — 14-26
Export / import of char arrgys — — — — =« - — — = — — == 14-27
Char arrays as parameters (standard) ———— = —— — —— 14-28
Char arrays as parameters (non standard) ————— = ———— 14-29
Mode file to generate a C / PLANC program — — — — — — — — — — 14-30
Interfacing C and PASCAL — - — — — — — = - o e e - — - — 14-31
Export / import of integer variables — — —-—=———— - 14-32
Integer variables as parameters =— — — = = — — — = = - — — — — 14-33
Export / import of real varigbles — — = — — - e = — — . — — =~ 14-34
Real variables as parameters =— — — = = =« — — = —— — — - 14-35
Export / import of char arrays — — — — = = = = = = = — = — — 14-36
Char arrays 8S parameters — — — — = — — — — - = = —= - ——— — 14-37
Export / import of Structs — = — — — — = - — = = — — — — — = 14-38
Structs as parameters = — — — — — — = - — — —_——_——— — — — - 14-40
Mode file to generate a C / PASCAL program =— = — — — = — — — 14-42

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

15

16

17

18

Index

< v >

Interfaces to the ND Environment 15-1
General - ——-——-"—"—=--"-—-——- - - = — - - - 15-3
Monitor Call Interface — - ——— = = = - — = = - —m — = =~ = — — 15-3
ISAM Interface — — — = — — — = = = = = — = ———— — — 15-24
SIBAS Interface ——-—-———— - —— - —— - 15-37
FOCUS Interface - ————-——"—"——c—c———- - ececece=w—-- 15-53

Appendix A: ASCII character set 16-1

Appendix B: The I/0 System 17-1

Appendix C: List of Functions 18-1

1

INDEX 19-1

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

notation

char

@list-files

help <command

page-length [¢lines: >]

options <option:

>.o..

Keywords of the language C and compiler commands are
printed in bold letters.

This is the SINTRAN III prompt sign. It indicates that
you are in connection with the operating system and can
enter SINTRAN commands.

Text to be typed in by the user is underlined. This
applies especially to compiler commands or SINTRAN
commands. (Program code, which can be typed in by the
user as well, is not underlined.)

The following notation is used when describing compiler
commands :

Required parameters are included in angle brackets.

Angle brackets enclosed by square brackets indicate
optional parameters. They can only be specified in the
command line and will not be prompted for in the dia-
logue.

If more than one value may be specified, the right
bracket will be followed by three dots.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

syntax diagrams Throughout this manual the following structures will be
used to describe the syntax of C:

This structure indicates that the construct in the rec-
tangle may occur an indefinite number of times, but at
least once (iteration).

The construct in the bigger rectangle is separated by
those (comma, semicolon, etc) in the smaller rectangle.

[]

By-passing arrows mean that the construct in the rec-
tangle may be skipped (option).

This structure describes alternatives.

This structure is a sequence of constructs.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Chapter 1

Introduction

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

[

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Introduction

Introduction

1-3

== A General Overview

control structures

functions

input/output

operators

general characteristics

C is a compact programming language with few but power-
ful basic constructs.

Like PASCAL, C provides the fundamental sequencing
statements:

e compound statements ({})

® decisions (if)

® loops (while, for, do)

® selection of a case out of a range of alternatives
(switch)

C programs can be split up into several functions, which
may be compiled separately, thus allowing modular pro-
gramming. Nesting of functions is not allowed.

The I/0-system is not a part of the C language, i.e.
there are no special statements for reading and writing.
Input and output operations can be effected by calling
functions of the C library.

Significant for C is its wide range of operators allow-
ing powerful expressions in arbitrary context.

In addition to the common constructs in higher program-
ming languages, C offers the following features:

complex initialisations at compile time
constant expressions within declarations
declarations in local blocks

function variables

functions returning structures
assignment operations within expressions
operations for bit manipulations

pointer arithmetic

comfortable operations on files

include files and include hierarchies
conditional compilation

optional runtime checks

(pointer check, index check, subrange check)

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

1-4 Introduction

== A Simple C Program

In this section a small C program is introduced, showing
the basic elements of programming in C. The program pro-
duces a table, which lists the frequency of the diffe-
rent input letters. If you want to try it out:
® enter the code in PED and store it (see PED Editor)
e enter the C compiler with the SINTRAN-command

anc o~

e compile and link your program with the command

NC: link <source file: >,<{program: > «

® start it from SINTRAN by entering ND and the
program name

@ND program-name ~J

example include <stdio.h>
int COUNT{26]:
main ()
{
int CH;
printf (“Please type your text\n"}:
printf ("Terminate your imput by CR\n"):

CH = getchar(); /*® read input character ./
while (CH !s '\n') /® '\n' gives the value of */
{ /® the newline character */
CH = lower (CH): /* call function lower */

if ('a' <= CH &% CH <= '2'")
++COUNT(CHR - 'a']: /® count letters ./

CH = getchar();
}

printf ("Frequency of letters:\n"); /* print title ./
for (CH= 0; CH < 26; ++CH) /*® print listing o/
if (COUNT[CH] != 0)
printf (" Zc : Xd\n", CH + 'a', COUNT[CH]):
}
lower (CH) /* function to convert upper into lower */
int CH: /* case letters ./

{

if (*A' <= CH && CH <= 'Z")
CH += ‘a’' - 'A':

return (CH):

}

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Introduction

#include <stdio.h>

getchar.

int COUNT[26];

the function main

a block: {...}

int CH

printf

getchar

/* text */

while (CH != '\n');

1-5

With the first statement the file stdio.h is included,
which contains the declarations of I/0 functions like

This statement defines an integer array with 26 ele-
ments. Array indices always start at zero, i.e. COUNT
has the elements COUNT[0] up to COUNT[25]. The semicolon
defines the end of the statement. As this declaration is
written outside all blocks it is a global declaration,
and the array elements will be initialised to zero auto-
matically.

Execution of a C program always starts with a function
called main. Parameters can be passed within round
brackets. In our example, main has no parameters, but
for syntactical reasons the brackets still have to be
written: main().

The curled brackets { and } combine all included state-
ments to one compound statement or block. They can be
compared to the DO-END block in PL/1 or the BEGIN-END
statement in PASCAL.

This statement defines an integer variable, which is
local to main. It will not be initialised automatically.

The library function printf sends a message to the
terminal. For more details see below.

Each call of the I/0 function getchar returns the next
input character. The default input device is the termi-
nal.

Any text enclosed by /* and */ is interpreted as comment
and will be ignored by the compiler.

In the statements controlled by this while condition

the function lower is called, letters are counted and
the next input character is read. These statements are
surrounded by curled brackets, which combine them to one
compound statement. They will be executed as long as
there is input. The operator != means not equal and \n
is the newline character. As it is surrounded by apos-
trophes its numerical value will be taken for the compa-
rison (see also character constant on the next page).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

1-6

the function lower

++COUNT[CH-"a"]

for

Introduction

The function lower is called with the current input
character as parameter. In order to be known to the
function, the declaration of the parameter must appear
after the parameter list and before the curled left
bracket at the beginning of the function definition. The
condition of the if statement tests whether the input
character is an upper case letter. The operator &&
represents logical AND.

This statement serves to convert an upper case letter
into a lower case letter. It could also be written as

CH = CH + ('a’ - 'A’)
Any single character can be written between apostrophes
to produce a value equal to the numerical value of the
character in the machine's character set. This is called
a 'character constant'. In the ASCII character set ‘A’
has the value 65 and 'a' the value 97 (see page 16-77).

Assuming the input character was ’'B’, then CH gets the
value 98.

Here the operator ++ increments an array element by one.
This statement could also be written as

COUNT[CH-'a’] + 1
The expression of the array index CH-'a’ reduces the
value set of the array indices to 0-25. If the input
character was ‘B’ and CH now consequently has the
value 98, the value of the array index is 1.
A for statement has three parts separated by semicolons.

The first part CH = 0;

initialises the control variable. It is only executed
once, and well at the beginning of the loop.

The second part CH < 26;

is the condition controlling the loop. As long as the
condition is true, the loop will be executed.

The third part ++CH;

increments the control variable by 1 every time the loop
is repeated.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Introduction 1-7

printf printf is a library function with the terminal as
default output device. It is a format conversion func-
tion for general purposes. In our example, the first
call of printf sends the title Frequency of letters:
to the terminal.

printf ("Frequency of letters:\n");
is equivalent to
printf ("Frequency ");

printf ("of ");
printf ("letters:\n");

newline : \n \n is an escape sequence representing a newline charac-
ter, which produces a carriage return and a line feed in
the output.

The first parameter in the statement
printf (” %e : %Zd\n”, CH + ’a’, COUNT[CH])

% is a string of characters to be printed, with each %
sign indicating where the following parameters are to be
substituted, and what form they are to be printed in.
Each ¥ construction in the format string is paired with
one of the following parameters. Generally, the number
of % constructions should correspond to the number of
remaining parameters.

%c - character In our example, %c means that a character is expected
as corresponding parameter (CH + ’a’). It has to be
printed on the fourth position, followed by a blank, a
colon and another blank.

%d - decimal integer %d means that a decimal integer is expected as corres-
ponding parameter (COUNT[CH]).

The escape sequence \n specifies that each line has to
end with a carriage return and a line feed.

According to the above rules, the first three output
lines of our example program could look like this:

Frequency of letters:

a : 16

b : 4

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Basic Elements

Chapter 2

Basic Elements

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Basic Elements

Basic Elements

2-3

== Character Set

letters

octal digits

decimal digits

hexadecimal digits

special signs

All lexical symbols, e.g. identifiers, keywords, etc.,
are built from the characters of the ASCII character set
(see Tage 16-77). Alternative characters are separated
by a

AlBlc|D|E|F|G|H|TI|JI|K|L]IM]
N|jo|P|Q|R|s|T|Uu|vVv I w]|Xx]|Y]2Z]
alblcldlelf]lglnlililx]|1l]n]|

nlolplalrlslelulv]w|x]|y]=

octal digit | 8 | 9

o
o
N
a

decimal digit | |el f]a|B]|C]|D|

E|F
sl=0*l/70l=0<i>icr3rcty eyl
el o] colank> [v |t 48| x]e |
\ |

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

2-4

Basic Elements

== Keywords

== Jdentifiers

Keywords are pre-defined character strings. They are
reserved for certain purposes, i.e. they must not be
used as identifiers (see "Identifiers" below). In C,
keywords are written in lower case letters. The fol-

lowing keywords are defined:

auto do float register
break double for return
case else goto short
char entry if sizeof
continue enum int static
default extern long struct

switch
typedef
union
unsigned
void
while

IDENTIFIER (ID):

An identifier (ID) is a name that designates a data
element, like a constant, a type, a variable or a

function.

letter] letter

]

digit
l:J g

T

i

An 1dentifier is a sequence of letters, digits and/or
underscore, starting with a letter or underscore sign.
It may consist of at most 32 characters all of which are
significant for the compiler and the ND-500 linkage

loader.

Digstinction is made between upper and lower case
letters, i.e. name_l and NAME_1 are two different

identifiers.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Basic Elements

2-5

== Constants

DECIMAL NUMBER:

example

OCTAL NUMBER:

exanmple

HEXADECIMAL NUMBER:

example

Before we can define the different kinds of constants,
we first have to define some basic elements:

—— non-zero
decimal digit

decimal digit

In order to distinguish between decimal and octal
numbers, a decimal number must always start with a
non-zero decimal digit.

123

-
]

octal digit

An octal number always starts with a O (zero).

The decimal digits 8 and 9 have the octal values 10 and
11 respectively.

0177

digit

(51 [
0 X hexadecimal
] L

A hexadecimal number always starts with the sequence Ox
or OX (digit zero and letter x). The letters a..f or
A..F represent the decimal values 10 to 15.

Ox7FFFF

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

2-6

CHARACTER LITERAL:

printing character

escape sequence

non-printing character

null character \0

NON-PRINTING CHARACTER:

example

Basic Elements

printing
character

escape sequence

non-printing
character

A printing character is a character of the ASCII charac-
ter set as described in the section "Character set" on
page 2-3.

An escape sequence is a mechanism to represent control
characters. It is written as a backslash followed by a
character. But, although it is written as two charac-
ters, it 1s stored as one single character. Below the
available escape sequences are listed together with
their meanings:

\b backspace

\n newline

\r carriage return
\t horizontal tab
\f form feed
\<blank> blank

W\ backslash

\" quotes

\' apostrophe

A non-printing character has an ASCII value smaller than
32 decimal. It is represented by a backslash followed by
1, 2 or 3 octal digits which specify the numeric value
of a bit mask. A special case of this construction is
\O, which indicates the null character, whose value is
zero. \O is the terminating character for a string.

E octal
digit __J
octal octal
digit digit
'\15' == '\015' == OxD == 015 == 13 (=='\n' (SINTRAN

only)).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Basic Elements

CHARACTER CONSTANT:

example

STRING CONSTANT:

storage required

maximum length

example

2-7

Now we can define the constants:

! character literal-——{:}——————a

The value of a character constant is the numerical value
of the character literal in the machine's character set.
Character constants can be used in numeric operations
just as ordinary numbers. Most often they are used in
comparisons with other characters. Our introduction
example on page 1-4 shows an application possibility.
The character values are listed in Appendix A on page
16-77.

ta! = 97

[o] [V
L_IL L

character literal *J

A string constant is a sequence of characters surrounded
by quotes. It is a character array and has storage class
static (see pages 3-6 and 4-3). The compiler automati-
cally places a null byte (\0) at the end of each string
to mark it for scans. Therefore, the storage required is
one byte more than characters between the quotes. The
same escape sequences as in character constants can be
used, e.g. a double quote within a string must be prece-
ded by a backslash (\").

The maximum length for a string constant is 4096 char-
acters including the quotes and escape sequences. A
string may be continued on the next editor line by
placing a backslash (\) immediately followed by CR at
the end of the line to be continued.

" \ "HALLO\ " on

This string constant requires 10 bytes storage
(including the terminating null character \0).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

2-8

INTEGER CONSTANT:

long

short

FLOATING CONSTANT:

Basic Elements

decimal number

octal number

hexadecimal number

An integer constant followed by the letter L (or lower
case 1) is stored as a long constant.

Short decimal integer constants are implicitly taken to
be long if their values exceed 32767; short hexadecimal
and octal constants become long if their values exceed

65535.

[.—| decimal
LJ [] | constant

examples

decimal
[J constant

decimal
constant

Gl
il

decimal
[] l constant

A floating constant consists of an integer part, a
decimal point, a fraction part, an e or E, and an optio-
nally signed integer exponent. Either the integer part
or the fraction part (not both) may be missing, and
either the decimal point or the E and the exponent

(not both) may be missing.

Every floating constant 1s taken to have double preci-
sion.

0.4 | 5e10 | 77. | .10e~1 | 6.54321E+8

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Basic Elements

CONSTANT:

== Comments

2-9

There are five different kinds of constants:

integer constant

character constant

string constant

floating constant

sizeof expression

A sizeof expression will be explained on page 7-9.

example

Comments are included by the symbols /* and */. They may
appear anywhere where blanks or new lines are allowed
and are ignored by the compiler.

/®* Comments should be used */
/* for program documentation. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types

Chapter 3

Data Types

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

3-2

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types

Data Types

3-3

== Simple Types

char

int

float

The main simple types are char, int and float. Examples
for these data types are the character, integer and
floating constants on page 2-7.

A data element of type char can contain any member of
the character set. Its value is equivalent to the inte-
ger code for that character (see "ASCII Character Set"
on page 16-77). The data type char has a range of
-128.. +127, while the range of unsigned char is
0..255.

The keywords short int, int and long int describe
three integer subranges. Furthermore, integers can be
qualified as unsigned. The range of unsigned integers
is defined by arithmetic

modulo 2n

where n is the number of bits used to store the integer
(see tables below). Unsigned integers are always
positive.

The type float describes a single precision floating
point value, whereas long float or double describe a
double precision floating point value.

SIZE, RANGE AND PRECISION OF SIMPLE TYPES

TYPE SIZE RANGE PRECISION
char 1 byte -128..+127 -
unsigned char 1 byte 0..255 -
short int 2 bytes -32768. .+32767 -
unsigned short int 2 bytes 0..65535 -
(long) int 4 bytes 2147483648, .+2147483647 -
unsigned (long) int 4 bytes 0..+4294967293 -
float 4 bytes £1076 7 digits
double 8 bytes +1076 16 digits

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

3-4

enumeration types

Data Types

Enumeration types are used to associate names with
integer constants.

ENUMERATION SPECIFICATION:

enumeration list

enumeration identifier

enumeration list

enum

10}

constant expression

examples

[=]

expression

]

The first identifier is the name of the enumeration. The
use of enumeration identifiers is described on page

4-6. The enumeration identifier and all identi-

fiers of the enumeration list must be disjunct.

The identifiers of the enumeration list can be used
wherever integer constants are allowed. If no constant
expression is specified the first identifier of the list
will be represented as O(zero), the second one as 1,
etc. incrementing by 1 from left to right. Alternative-
ly, you can explicitly assign an integer value to an
identifier; the following identifiers will get incremen-
ted values based on this assignment.

The constant expression must evaluate to a value of type
int. The exact definition of a constant expression is
given on page 7-15.

Each enumeration is regarded as an individual type.

® enum SPEC1
e enum TREE {OAK,MAPLE,BEECH}
where OAK=0, MAPLE=1, BEECH=2

o enum {red=0, green=5, yellow, blue}

where red=0, green=5, yellow=6, blue=7

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types

w= Implicit Type Conversions

Type Conversions

conversions by
assignment

explicit conversion

When combining values of different typés in an arith-
metic operation, type conversions will be done implicit-
ly according to the following rules:

1. First, any operands of type char or short int are
converted to int, and any of type float are converted
to double.

2. Then, if either operand is double, the other is
converted to double, and that is the type of the
result.

3. Otherwise, if either operand is long int, the other
is converted to long int, and that is the type of
the result.

4. Otherwise, if either operand is unsigned, the other
is converted to unsigned, and that is the type of
the result.

5. Otherwise, both operands must be int, and that
is the type of the result.

For the conversion of a long integer value into a short
integer or char value the most significant bits will be
truncated.

When assigning a double value to a float value the
mantissa will be rounded and then truncated.

. For the conversion of float into integer the decimals

will be truncated. If the float value is too big to
be represented as an integer, the result is undefined.

Explicit type conversions are described on page 3-16.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

3-6

== Composed Types and Pointers

— Arrays

subscripts

examples

Data Types

As composed types and pointers may be rather complex, we
first describe the main, and simpler, aspects of these
types. This will enable you to understand better the
syntax diagrams of type definitions and specifications
at the end of this chapter. There you also will find
some examples of more complex type definitions. In the
chapters "Pointers and Arrays" and "Functions”" appli-
cations and special details of these types will be
described.

In C, an array is declared by an identifier followed by
the sizes of the dimensions in square brackets. All ele-
ments of an array have the same specified type.

An array subscript may be any positive integer expres-
sion, e.g. an integer variable or constant. Array sub-
scripts always start at O.

int DIGIT[10]
/* DIGIT is an array with 10 integer elements: */

/* DIGIT[0] up to DIGIT[S] */

char ABC [10] [2] (5]

/* ABC is a three-dimensional array with 100 */
/* character elements. In other words, ABC is */
/®* an array with 10 items; each item is an */
/* array of 2 arrays; each of the latter arrays */
/* is an array of 5 characters. */

NOTE
An element of an array must not be a function (see
page 3-9); only pointers to functions are allowed.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types

— Structures

struct

example

component reference

example

A structure is a collection of one or more variables,
possibly of different types, grouped together under a
single name for convenient handling. In some other

languages, e.g. PASCAL, structures are called records.

A structure specification starts with the keyword struct
followed by an optional structure identifier and, in
braces, a list of component declarations. Each structure
specification describes an individual type, i.e. two
different structures describe two different data types.

struct EMPLOYEE {
char name[16];
int telephone[3];
int department;

}

Three operations on structures are allowed:

® The address of the structure can be determined
(see page 5-5).

® A structure may be assigned to a structure variable
of the same type or may be returned as the result of
a function.

e Components can be accessed. A component of a struc-
ture can be handled like any other variable. One
method of referencing a component is:

structure_variable_id . component_id

Components can a&lso be referenced by using pointer
arithmetic (see page 5-5).

struct {
float COMP1;
char COMP2;
} ST_VAR;

ST VAR 1s a structure variable identifier. The
components are referenced as

ST_VAR.COMP1
and ST_VAR.COMP2

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

3-8

Data Types

— Unions

size of a union

union

examples

current contents

Unions allow the user to have overlapping data in a
single area of storage. Its main purpose is to save
storage. Their data structure corresponds to the variant
record (CASE) of PASCAL. A union is a variable that may
contain objects of different data types and sizes, but
only one at a time. It has the size of its largest
component.

The syntax of a union specification is identical to a

.structure specification, except for the keyword. The

keyword struct has to be replaced by the keyword union.

union UNION_ID {
int INTVALUE;
char CHARVALUE;
short SHORTARRAY[3]:
}

SHORTARRAY 1is the largest component of above union. It
requires 6 bytes storage (a short value is stored in 2
bytes). Thus, the size of above union is 6 bytes.

A union can also be a component of a structure:

struct d {

int day;

union {
int mon_nr;
char mon_name[4];
} month;

int year;

}

At runtime, the actual type and value of a union is
determined. by the last assigned variable. It is the
programmer's responsibility to keep track of the data
type that is currently stored in a union.

~— Note
A component of a structure or union must not be a
a function; only pointers to functions are allowed.
(See sections "Pointers" and "Functions" on the
next page.)

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types

— Pointers

examples

— Functions

3-9

A variable of type pointer contains the address of
another variable. It is defined by an asterisk (*)
directly followed by a variable identifier. In the
following declaration *V is a variable of type T and
V is a pointer containing the address of *V:

T *v

Note
A pointer can only refer to an object of the defined
type. A pointer declared as int *V can only point
to an object of type int.

int *a [5]; /* array of 5 pointers to integer */
int (*a) [S]; /* pointer to an array of 5 integers */

Functions are sequences of declarations and statements

that can be called by their name and may return a result

value. Functions are used to

® structure a program into logical units,

e save storage and double writing, and

e save programming effort. Typical problems can be
solved in functions, which can also be used by other
programs.

A simple function definition consists of

e an optional type specifier (e.g. int) to specify
the type of the result value,

e a function identifier, and

e an optional parameter list in round brackets.

As result type for functions the special type void can
be specified, which indicates that the function does not

deliver a result value. If no result type is specified
int is the default type.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

examples

Data Types

A function is activated by the appearance of its identi-
fier. Functions returning a value may be part of an
expression. Calls of functions without a return value
are statements.

int F1() or_ F1()
/* F1 is a function without parameters. */
/® It returns a value of type int. */

char *F2(P1,P2)

/* The function F2 has two parameters. */
/* It delivers a pointer to a char object */

struct {

int s1;

long s2;

} F3 ()
/* The function F3 has a structure as */
/* result type *®/
(*Fl4) ()
/* The function F4 delivers a pointer */
/* to a function of type int */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types 3-11

== Type Definitions

Type definitions do not reserve storage. As in PASCAL
they define type identifiers which denote the type
specified and can be used in other type definitions or

declarations.
TYPE DEFINITION:
—- typedef type specifier declarator {z}——~

The following syntax diagrams give an exact definition
of a type specifier and a declarator. Both the type

specifier and the declarator are also elements of other
syntax diagrams. Therefore, we advise you to study them

carefully.
TYPE SPECIFIER:
unsigned unsigned
unsigned char char
unsigned short
int
default type: int
short
short int
long int — long
float float [—
I-—o-long
long float = double
double [—~
(see page 3-13) structure specification
(see page 3-4) enumeration specification
identifier of another type

If no type is specified int is the default.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

3-12 ’ Data Types

DECLARATOR:
simple variable identifier
brackets change p'riority ﬂ—declarator
of operators
pointer * ~declarator
function declarator E —m
array declarator nstant expression

Examples for constant expressions are integer and cha-
racter constants. The exact definition of a constant
expression is given on page 7-15. The priority of
operators is described on page 7-10.

examples typedef enum {red, blue, green} COLOUR;
typedef COLOUR C1, C2;

type identifiers /* The type identifiers COLOUR, C1 and C2 */

/® denote the same type, i.e. the above %/
/* defined enumeration. */

typedef ungigned *F1(), (®P1)();

/* Brackets in a declarator : */
/®* F1 is a function that returns a pointer */
/* to an unsigned integer object. Pl is a */

/* pointer pointing to a function that */
/* returns an unsigned integer. Syntacti- */
/* cally, F1 and Pl are type identifiers. */

Note
{-Type definitions must not be repeated!

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types

STRUCTURE SPECIFICATION:

3-13

struct identifier
E} structure declarator E]——j
union
A
L]
STRUCTURE DECLARATOR:
—{type specifier declarator

expression

B—- constant —T

L1

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

3-14 Data Types

examples typedef struct S {
double (®COMP1)();
unsigned COMP2, COMP3;

short COMP4;
} ST;
structure identifier /* The structure identifier of above structure */
type identifier /* is S, whereas the type identifier is ST. The */
/* first component COMP1 is a pointer to a */

/* function of type double. The second and third */
/* components are defined as unsigned integers */
/* and the fourth one as a short integer. */

typedef struct S2 {
char [20] [10] STRINGS;

union {
char LETTER;
int CODE;
} NC;
} T2;
structure identifier /* S2 is the structure identifier, describing */
/* everything between the braces, while T2 is a */
type identifier /* type identifier. The component STRINGS speci- */
/* fies an array of 20 strings with a length of %/
/* 10 characters. The second component NC con- */
/* tains either an character or an integer. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Data Types 3-15

== Type Names

Type names are needed for explicit type conversions (see
next page) and in sizeof expressions (see page 7-9).

Be careful not to confuse type names and type identi-
fiers (see page 3-11-3-13).

TYPE NAME:

—— type specifier abstract declarator|——

where an abstract declarator is defined as:

ABSTRACT DECLARATOR:

abstract declarator

abstract declarator

abstract declarator

abstract [constant B—
declarator expression

A constant expression can be an integer, a character or
an enumeration constant. At compile time it evaluates
to an integer constant.

examples char *
double ()
int (5]
float

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

3-16 Data Types

== Explicit Type Conversions

Explicit You can force an explicit type conversion by using the
Type Conversions cast construct:

(type name) expression

The value of the expression is converted into the speci-
fied type according to the rules of implicit conversion
{see page 3-5). Generally, the expression is a variable
identifier.

pointer conversion As pointers cannot be converted implicitly, the cast
construct is mainly used for the conversion of pointers.

examples int NUMBER; /* NUMBER is declared as integer */
float F; /* F is declared as float */
char *P; /* P is a pointer to char */
double *D; /* D is a pointer to double */
F (float) NUMBER;

D

{double *) P;
/* Before the assignment NUMBER is converted */

/* into float and P into a pointer to double. */

parameter passing Another important application of cast constructs is the
conversion of function parameters to be passed:

example double R, sin();
int I;

/* We assume, that the function sin requires a */
/* parameter of type double: */

R = sin((double)I);

/* With the cast construct I is converted into */
/* double before being passed to sin. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Declaration and Initialisation of Variables 4-1

Chapter &

Declaration and Initialisation of Variables

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

4-2

Declaration and Initialisation of Variables

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Declaration and Initialisation of Variables 4-3

== Storage Classes

The storage class of an identifier determines its scope
and its lifetime.

local A variable declared within a block or function is local
to its block, i.e. its scope is restricted -to the block
where it is declared. Local variables cannot be referred
to from outside the block.

global A variable declared outside all blocks, i.e. outside the
function main, has a global scope. Its scope is either
the entire program or restricted to its source file. As
functions cannot be nested they always have a global
scope.

In C, there are four storage classes:

automatic (auto)
external

static

register

auto e Only local variables can be declared automatic. Each
time when entering a block, their value is undefined
(other than local static variables - see below).

external o External variables have a global scope. They exist and
retain their values throughout the execution of the
entire program. External variables can be used to com-
municate between functions or separately compiled
modules. Thus, they offer an alternative to the data
passing of function parameters and result values,
especially when long parameter lists are needed. How-
ever, you should be careful with external variables,
as they can be altered by different functions.

local static e A variable declared static within a function has a
local scope like automatic variables. The only dif-
ference is that static variables retain their values
until the next invocation of the block.

global static A variable declared static outside all functions has a
global scope like external variables, with the restri-

ction to the source file. Functions compiled in a
different file have no access to that variable.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

4=y

register

default storage class

example

Declaration and Initialisation of Variables

e Variables of storage class register behave like auto-
matic variables. If the compiler performs register
optimisation, they are stored in the hardware
registers of the machine, which leads to a faster
execution.

If no storage class is specified the default storage
class for ‘a variable declared within a block is auto,

and

for a variable declared outside all blocks external.

/* SOURCE FILE 1 */

Any external declaration here (outside all func-%*/

/* tions and without the keyword static) defines a */

/* global scope throughout the entire program for */

/* that variable, i.e. such a variable can be ac- */

/* cessed in source file 1 and source file 2. */
main()

{ /* begin main */

} /* end main %/

/* Any variable declared here can be accessed®/
/* in block 1 or 2, but not in function_1. */

{ /* begin block 1 */

/* Any declaration inside this block is */
/* local to block 1. A declaration of */
/* the samme variable identifier outside®*/
/* this block becomes invalid inside. */

} /* end block 1 %/

/* block 2 */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Declaration and Initialisation of Variables

== Declarations

4-5

/* SOURCE FILE 2 */

/* Any global declaration in this place including */
/* the keyword static is only global within this */
/* source file. */

function_1()

{

_ !

Declarations

implicit function

Except integer functions, all variables and functions
must be declared before use. A declaration specifies
either a storage class or a type or both, and is fol-
lowed by one or more variable identifiers. Furthermore,
the declaration may also include an initialisation.

An unknown identifier followed by a left bracket is
implicitly declared as a function with int as result

—l—-B— initialiser L—T E|_
{1
L

declaration
type.
DECLARATION:
type specifier declarator
auto
register
static

The initialiser is described on page 4-9.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

4-6

defaults

redeclarations

example

identifiers

Declaration and Initialisation of Variables

REMEMBER: If no storage class is specified the default
storage class for a variable declared within a block

is auto, and for a variable declared outside all blocks
external. The default data type is int.

Note
FA function may only be declared external or static.

Generally, redeclarations of variables and functions
should be avoided. A redeclaration with identical type
and storage class will be ignored; if you redeclare an
external variable or function as static, this redecla-
ration will be ignored as well. A redeclaration of a
structure or union will lead to an error.

static Y;
double X;

}

/* As X is declared inside a block, it implicitly */
/* gets storage class auto. Y is declared outside */
/* all blocks, i.e. it is a global variable. */
/* Its type is int. : ./

In type definitions of structures, unions and enumera-

tions two kinds of identifiers may be defined:

® The first one before the braces is optional. It
designates the kind of structure, union or enume-

ration.

® The second one behind the braces is the type iden-
tifier, which is mandatory.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Declaration and Initialisation of Variables

Both identifiers may be used in declarations:

structure declaration struct STRUCTURE_ID VARIABLE_ID ;
is equivalent to

STRUCTURE_TYPE ID VARIABLE ID ;

union declaration union UNION_ID VARIABLE ID ;
is equivalent to

UNION_TYPE ID VARIABLE ID ;

enumeration declaration enum ENUMERATION_ID VARIABLE ID ;
is equivalent to

ENUMERATION_TYPE_ID VARIABLE ID ;

example typedef struct STR_ID {...} STYPE_ID;
Given the above type definition, there are two
alternative ways to identify a structure in a
variable declaration; you can use the structure
identifier as in:
STYPE_ID VAR_ID;
or the type identifier as in:

struct STR_ID VAR_ID;

Both declarations are equivalent.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

4-8 Declaration and Initialisation of Variables

== Extern Specification

Extern Specification If you want to access {i.e. import) variables or func-
tions that are declared in other source files, you have
to specify them as extern.

EXTERN SPECIFICATION:

.
L

—— extern —T declarator

type specifier rj

L

type specifier For clarity's sake, an extern specification should
always contain a type specifier; it must be the same
type specifier as in the declaration of the source file.

Note
You can only import external variables or functions,
i.e. global variables or functions that are not
declared as static.

example source file 1: source file 2:
float ITEM; extern float ITEM;
main() F2()

{
ITEM = 5; }
F2();

}

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Declaration and Initialisation of Variables h-g

== Initialisations

Initialisations

For initialisations the following rules generally apply:

implicit initialisation e External and static variables are only initialised

explicit initialisation e

initialiser

INITIALISER:

examples

Note
’—A union cannot be initialised.

once, and well at the beginning of program execution.
If there is no initial value specified in the decla-
ration, they are implicitly initialised to zero.

Automatic and register variables must be initialised
explicitly before use, otherwise their contents is un-
defined.

For external and static variables the initialiser is
restricted to being a constant expression; automatic
or register variables may be initialised by any
expression involving previously defined values. Even a
function call as part of the expression is allowed.

expression

initialiser

M
L

[~]

1

float FL; /* FL and L are implicitly */
long L; /* initialised to zero. %/
func()

{

int N = 2; /* N, X, Z and A are initia~ %/
int X = N - 1; /* lised each time the block */
float Y,Z = O; /* is entered. Y is undefined.*/
char A = '\0';

}

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

— Initialisation of Arrays

examples

size calculation

character arrays

nulti-dimensional
arrays

Declaration and Initialisation of Variables

Arrays can be initialised by a list of initialisers
enclosed in braces and separated by commas.
short digit[10] = {0,1,2,3,4,5,6,7,8,9};
int number{8] = {20,15,10,5};
char wordi[] = {'w','o','r','d",'\0"'};
char word2[5] = "word":
char hex[] = {'a','b",'c',’d",'e','f'};
{
}
/* The above arrays have 10, 8, 5, 5 and */

/* 6 elements. */

If there are fewer initialisers than the size of the
array, the other elements will be set to zero. It is not
possible to specify repetition of one initialiser and an
element in the middle of the array can only be initiali-
sed by giving the preceding values as well.

If the size of an array is not specified the compiler
calculates it by counting the number of initialisations.
Because of the null character the size of a character
array is always one more than the length of the string
constant.

As you can see in above examples, character arrays can
be initialised in two ways:

e by specifying single values and the null character at
the end, or

® by giving a string.

Each row of a multi-dimensional array is initialised
like a one-dimensional array. As the compiler can only
calculate the size of the first dimension, the other

dimension sizes have to be specified by the user expli-
citly.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Declaration and Initialisation of Variables 4-11

examples static int days[2]{12] = {
{31,28,31,30,31,30,31,31,30,31,30,31},
{31,29,31,30,31,30,31,31,30,31,30,31} };

char MONTH[][10] = {
"January",
"February",
"March",
"April",
"May" .
"June",
"July",
"August”,
"September",
"October",
"November",
"December" };

/* The array MONTH has twelve lines with a */
/* maximum of ten characters each ("September" */
/* is nine characters long plus the null char- */
/* acter). The size will be calculated as */
/* 12 * 10 * 1 bytes. The lines with the shor- */
/* ter month names will be padded with null */
/* characters. */

— Initialisation of Structures

You may only initialise external or static structures.

The initialiser is specified in the same way as for one-
dimensional arrays, i.e. the values are enclosed in
braces and separated by commas.

examples static struct date {

int day;

struct {
int month_nr;
char month_name[4];
}

int year;

} = {4,{3."APR"},1987};

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

4-12 Declaration and Initialisation of Variables

When the initialisation list is complete, the inner
braces may be omitted.

examples struct {
char *day;
int number;
} count[] =
{ "Monday",0,
"Tuesday",1,

"Wednesday", 2,
"Thursday”,3,
"Priday”,d, }s

— Initialisation of Pointers

There are only two meaningful initialisers for a
pointer:

e the value O (zero), which indicates that the pointer
is pointing nowhere, or

® an expression involving addresses of previously

defined data of appropriate type.

examples int DIGIT;
’ int *A = 0; /* A is pointing nowhere */
int *NUMBER = &DIGIT;:

/* NUMBER is declared as an integer pointer */
/* initially containing the address of DIGIT. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Arrays and Pointers 5-1

Chapter §

Arrays and Pointers

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Arrays and Pointers

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Arrays and Pointers

== Relationship Arrays - Pointers

one-dimensional array

example

pointer arithmetic

5-3

There is a close relationship between arrays and poin-
ters. In fact, each array identifier is a pointer to the
first element of an array.

ARRAY IDENTIFIER =

POINTER TO FIRST ELEMENT

Thus, any reference to an element of an array could be
written as a pointer expression.

A reference to an element of a one-dimensional array is
converted as follows:

ARRAY_ID [SUBSCRIPT]
is equivalent to

*(ARRAY_ID + SUBSCRIPT)

int A[20];
int *POINTER_A = A;

/* The initial value of POINTER_A is the starting */
/* address of the array element A[0]. */

*(POINTER A + 3) = X;

/* The value of X is assigned to A[3]. */
/* The same could have been achieved by: */

POINTER A[3] = X;

Pointer arithmetic is defined such that the increment
(POINTER_ A + 3 in above example) is scaled by the
storage size of the variable pointed to. Regardless of
the type of an array, if you increment a pointer by 1,
it points to the next element of the array.

There is only one difference between an array identifier
and a pointer. A pointer is a variable, whereas an array
identifier is a constant. So POINTER_A = A and

POINTER A + 3 are legal operations, but operations

on an array identifier (A=...) are not allowed.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

multi-dimensional
arrays

example

array_identifier([]

Arrays and Pointers

Multi-dimensional arrays are stored row after row.

Assuming an array is declared as
int A[d1][d2][d3]
and P is a pointer to the first member of the array,

then the following formula is used to convert an array
reference Afx][y][z] into a pointer:

P=P+ (x*d2+y)*d3+ z

The same principle applies to all multi~dimensional
arrays.

int A[2][3][2];
The elements of the array are stored as follows:

afo]fo](0] A[0][0][1] A[O][1](0] A[O][1][1]
Af0][2][0] A[o0][2][1] A[1](0]{0} A[1][O][1]
A[1][1]00] A[f1]01](1] A[1][2](0] Af1][2](1]

Assuming the pointer P contains the address of

the first element A[0][0][0], then a reference

to A[1][2][0] is calculated as follows:
P=P+ (1 %3 +2)%2+0

— P

P + 10

Now P contains the address of the 11th element of the
array.

The size of an array may be omitted in extern specifi-
cations, parameter declarations (see page 6-3) or if a
declaration is followed by an initialisation. For multi-
dimensional arrays only the size of the first dimension
may be missing.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Arrays and Pointers

== Pointer Arithmetic

address operator &

indirection operator

component reference

structure pointer
operator ->

component reference

examples

*

The unary operator & (address operator) calculates the
address of a data element. The address operator may only
be applied to variables and array elements, not to
constants or expressions.

The unary operator * (indirection operator) supplies
access to the contents of the data element the pointer
is referring to. Assuming a structure and a pointer are
declared as

struct { int DAY, MONTH, YEAR; } DATE, *P;

then (*P).MONTH would designate the second component of
the structure. As the primary operator has a higher
priority than the indirection operator ¥, the brackets
are necessary (see "Associativity and Priority of
Operators" on page 7-10).

Note
If you want to refer to a component of a structure,
the pointer must be declared with the same type as
the structure.

The structure pointer operator (a minus sign followed
by a greater than sign, offers a shorter way of desig-
nating a component of a structure. If P is a pointer to
a structure S, then P->COMPONENT_ID points to an indi-
vidual component of the structure.

P~>COMPONENT _ID
is equivalent to

(*P) .COMPONENT_ID

int A,B, *PA;

PA = &A;

/* The address of A is assigned to the pointer */
/* variable PA. Remember that the type of the */
/* variable and the base type of the pointer must */
/* be the same. */
B = *PA;

/* This statement is equivalent to B = 4. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

5-6

assignments to pointer

addition/subtraction

of integers

comparison with zero

comparison of pointers

pointer subtraction

example

Arrays and Pointers

The following operations on pointers are allowed:

® Only assignments of addresses and the value O to a

pointer are meaningful.

Integer values may be added to or subtracted from
pointers. If P points to an element A/n] then P+{
points to A{n+{], and P-{ points to A[n-i].

See also example on page 5-3.

To find out whether a pointer contains an address or
not, it can always be compared with O (zero). Zero
indicates that the pointer is pointing nowhere.

Pointers pointing to elements of the same array can be
compared using one of the following operators:

less than

less than or equal
greater than

greater than or equal
equal

not equal

-V VY AA
"

If, for example, PI points to an earlier element than
P2 does (e.g. Pl points to Af2] and P2 to A[3]) then
the comparison Pl < P2 is true.

The subtraction of pointers referring to elements of
the same array supplies an int value, which is the
number of elements between both pointers.

strlen(S) /* calculate length of string S */
char *S;

{
char *P = S;
while (*P != '\0')
P++;
return(P-S);
}

At the beginning P points to the first character of
the string. As long as P does not refer to a null
character (end of string) it is incremented by 1. P-S
gives the length of the string.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Arrays and Pointers

5-7

== Pointer Arrays

storage allocation

example

Provided a two-dimensional integer array and an array of
integer pointers are defined as

int A[10][10];
int *B[10];

Then the declaration for A reserves storage for 100
elements, whereas for the pointer array B storage for 10
pointers is reserved. If every pointer of B refers to an
array of 10 elements, another 100 storage units will be
needed. This storage can be allocated by calling the
library function malloc, which is described on page

13-68:

#define char® malloc():

main{)
{
int *B[10}. {i:

for (i=0; 1<=9; i++};
B{i] = (int®) malloc(l0®sizeof(int)):

/® if you want to get rid off */
/* the allocated space... */

for (1=0: 1<=9: fe+e¢):
free(B[(1i]):

For each pointer of the pointer array B malloc allocates
40 bytes, in which you can store 10 integers on a
ND-500. As malloc returns a pointer to char, you

have to use a cast construct to convert the result into
a pointer to int.

Now A and B can be used in a similar way. Both,
A[x][y] and B{x][y] refer to a single int value.

A pointer array with the same number of elements as a
two-dimensional array needs more storage than the equi-
valent array. In our example A takes 400 bytes, whereas
B takes 440 bytes.

The main reason for using pointer arrays is that the
rows of the array may be of different or unknown length.
This is often the case for strings.

The example on the next page shows an alternative method

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

5-8 Arrays and Pointers

of allocating storage for a pointer array. When decla-
ring an array of pointers you can immediately initialise
it and thus allocate storage for it. This applies only
for character pointers.

example /* initialisation of a pointer array */

char *MONTH[] = {
"January",
"February",
"March",
"Apl‘il" .

"August",
"September”,
"October”,
"November",
"December" };

/* The 12 pointers require 12 * 4 bytes storage, */
/* whereas the strings require 86 * 1 bytes. */
/* Thus, this pointer array takes 134 bytes. The */
/* equivalent two-dimensional array MONTH[12][10] */
/* declared in the example on page 4-11 would */
/* need 120 bytes. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Functions

Chapter b

Functions

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Functions

Functions

== Syntax of a Function

FUNCTION DECLARATION:
function block —
declarator L
— gstatic - type specifier — parameter
declaration
list
void
FUNCTION DECLARATOR:
function header
(function declarator
B— function declarator
function declarator Z.Il |_|)—|.|
function declarator constant expression
FUNCTION HEADER:

——{identifier

(] n
L L
- identifier (—

M
L

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

6-4 Functions

PARAMETER DECLARATION LIST:

type specifier declarator

-
L

[]

BLOCK:

(1
™
[+

statement

type definition

extern specification

—~variable declaration—-

Depending on the result type a function must be declared
once or twice:

e If the result type of a functi-n is other than int,
the function must be declared in the calling
function before the call (see page 4-5).

e The second function declaration follows the rules
described in the above syntax diagrams. No matter what
the result type is, this declaration is always needed.

REMEMBER: Functions have a global scope and cannot be
nested. As you can see in the syntax diagrams a function
can be declared static, thus restricting its scope to
its source file.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Functions

example

main()
double x,f1(); /* type declaration in */
/* calling function */
char ch;
x = fl(ch); /* function call */
}

/* function declaration: */
double f1(w) /* type and function declarator */
char w; /* parameter declaration list */
{

/* block */
}

== Parameters

call by value

call by reference

type conversions

example

In C, parameters are passed by value. This means that
the values of the parameters passed are copied to the
formal parameters,which are local to the function. As an
extension to standard C, structures and unions may also
be passed as value parameters.

However, if you want to change data elements outside the
function, you can pass parameters by reference, i.e. you
pass a pointer with the starting address of the data
element and access the data by indirection. As an array
identifier is a pointer expression, array parameters are
an example for parameter passing by reference.

The following type conversions are implicitly executed
before the actual passing of the parameters:

e float parameters are converted to double values.

e char and short parameters are converted to int values.
It is up to the programmer to ensure that the types of
the actual and formal parameters are compatible. If not,
you should use a cast construct (see page 3-16).

As the function sin requires a parameter of type double,

you should use sin(1.0) or sin((double)l), but never
sin(1l).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

6-6

variable number
of parameters

global variables

== Return Value

return

type conversions

no return value

void

Functions

It is also possible to pass a variable number of para-
meters. For this purpose the first parameter should
indicate how many parameters are passed. It is the pro-
grammer's responsibility to take care that the function
does not need more parameters than passed and that the
data types are compatible.

If there are too many data which have to be passed, glo-
bal variables offer an alternative to parameter passing.
Depending on their storage class (static or external)
they can be accessed by any function of the same source
file or even of the whole program. Another advantage of
global variables is that you can initialise arrays and
structures.

However, we'd like to repeat that you should use global
variables very carefully. Data connections of global
variables are not always obvious.

Control to the calling function returns either explicit-
ly by the return statement or implicitly when reaching
the closing right brace of the function.

The return statement followed by an expression in
brackets enables you to return a value to the calling
function. The value of the expression is the result
value of the function. If necessary, the type of the
result value is converted to the type of the function
(see "Implicit Type Conversions" on page 3-5).

If the function call is not part of an expression, but a
statement, the return value is ignored. If you omit the
expression after return the return value is undefined.

For clarity's sake, a function that does not return a
value should always be declared as void.

It is not illegal, but bad programming style, if a
function, depending on the parameter values, sometimes
returns a value and sometimes does not.

Note
The result of a function cannot be an array or a
function; pointers to such objects are allowed. As
an extension to standard C a function may return a
structure or a union (see example on the next page).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Functions

examples ®

include <stdio.h>

main()

{

int i;
char S[100];

/* The integer function pos needs not be declared here. %/

printf ("Input string: ");
scanf ("%s", S); /* read input from terminal */
i = pos(S,"day")};
if (i == -1)

printf ("The string 'day' does not occur in the word");

/* for function scanf (see page 13-55) */

6~7

else printf ("The string 'day' starts at position %d\n", i+l);

/* pos returns the position of T in S§; */
/* if not found -1 is returned ®/

pos(S,T)
char S[],T[]; /* parameter declaration */

)

/Q
/Q
/.
/.
/.
/'
/.

int 1i,j,k;

for (i = O0; S[1] != '\0"; 1++) {
for (j=i, k=0; T[k]!'='\0" && S[j]==T[k];
je+, ke+)

1f (T[k] == '\0')
return(i);

return(-1); /* string T not found */

The first part in the for statement initialises the control
variables, the second part is the condition controlling the
loop. As long as the condition is true, the loop will be
executed. In the third part the control variables are in-
cremented by 1. The second for loop does not control any
statement. If the second return statement was missing
problems could occur in the main function.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

6-8

== Recursion

example

Functions

e struct STR { int a,b;};

main()}
{

struct STR S, f();

S = f(3);

printf ("a = %d, b = %d\n", S.a, S.b);
}

struct STR f(i)

int i;

{
struct STR TEMP;
TEMP.a = i; TEMP.b = i*i;
return TEMP;

}

Output: a = 3, b =9

In C, functions may also be used recursively, i.e. a
function may call itself. When a function calls itself,
each invocation gets a fresh set of all automatic var-
iables, independent of previous invocations.

Generally, recursion saves no storage, since all values

processed have to be maintained on a stack. But the code
of recursive functions is more compact and often easier

to understand.

#include <stdio.h>
main()

int N;

printf ("Your input number: ");

scanf ("%d4", &N);

printf ("\nFactorial of %d = %d", N, fac(N}));
}

/* fac(N) calculates the factorial of N. (The fac-*/
/* torial is defined only for positive integers.) */

fac(N)
int N;

if (N < 2) return (1);
else return (N * fac(N-1))

}
/* The factorial for 3 is calculated as follows: */
/* fac(3) = 3*fac(3-1) = 3*2*fac{l) = 3*2*1 */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions 7-1

Chapter 7

Operators and Expressions

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

7-2

Operators and Expressions

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions

== (perators

primary operators

unary operators

binary operators

—— Arithmetic Operators

We can distinguish three kinds of operators:

Primary operators can be used in primary expressions.
These are references to objects, constants or compo-
nents of a structure or union, as well as subscripting
and function calls. Primary operators are:

0 (]

Unary operators have only one operand. They are either
used as a prefix (before their operand) or as a post-

fix (after their operand). Unary operators always have
a higher priority than binary operators.

->

Binary operators have a left and a right operand.

If necessary implicit type conversions will be done
according to the rules described on page 3-5.

At the end of this section you will find a complete
overview of operators' priority.

OPERATOR MEANING TYPES OF OPERANDS
- unary minus simple types
+ addition simple types,
- subtraction pointers {page5-6)
hd multiplication simple types
/ division simple types
% modulus integer types

(rest of division)

The unary minus has the highest priority of arithmetic
operators the multiplicative operators *, / and ¥ have
a higher priority than the additive operators + and -.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

~1
1
£

Operators and Expressions

— Increment and Decrement Operators

Operators OPERATOR MEANING TYPES OF OPERAND
++ increment, adds 1
to its operand simple types,
pointers
-- decrement, subtracts (see page 5-6)
1 of its operand

Increment and decrement operators are unary operators.
As a prefix operator they increment/decrement their
operand before its value is used, as a postfix operator
they increment/decrement their operand after its value
has been used. These operations are only possible on
variables (having an address) and not on constants.

examples Assuming that N equals 5, the statements below assign
the following values to X and N:

statement value of X value of N
X = ++N; 6 6
X = =-=N; 4 b4
X = N++; 5 6
X = N--; 5 4

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions 7-5

— Relational Operators

— Logical Operators

AND &&

OR |

negation !

OPERATOR MEANING TYPES OF QPERANDS

== equality simple types, pointers,

'= inequality structures

> greater than simple types, pointers

>= greater than simple types, pointers
or equal

< less than simple types, pointers

(= less than simple types, pointers
or equal

Comparisons supply the int value 0, if the relation
is false, and 1, if the relation is true.

OPERATOR MEANING TYPES OF OPERANDS
L& logical AND
The operands may be
11 logical OR of any type, but
must be comparable
! logical negation to O.

The result of a logical AND operation is 1, if both
operands are non-zero otherwise the result is O.

The result of a logical OR operation is 1, if either of
its operands is non-zero; otherwise the result is O.

The unary operator ! returns O, if its operand is non-
zero and 1, if its operand is O.

Logical expressions are evaluated from left to right,
but only until the result is known. The result type

is int.

In conditions, 0 is interpreted as false and any value
different from O as true.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

7-6 Operators and Expressions

— Bitwise Logical Operators

OPERATOR MEANING TYPES OF OPERANDS
& bitwise AND
| bitwise OR simple types
B bitwise exclusive OR except
<< left shift float and double
>> right shift
- one's complement

bitwise AND & The bitwise AND operator & is used to set bits to zero.
The result is the bitwise AND function of the operands.

example C = N & MASK;

This statement sets only those bits in C
to one, that equal one in N and MASK:

If N = 1101
and MASK = 1010
then C = 1000
bitwise OR | The bitwise OR operator | is used to set bits to one.

The result is the bitwise OR function of the operands.

example C = N | MASK;

This statement sets only those bits in C to zero, that
equal zero in N and MASK:

I1f N = 1101
and MASK = 1000
then C = 1101
bitwise exclusive OR - The result of a bitwise exclusive OR operation is one,

if the corresponding bits are different, otherwise zero.
This operation is also called addition modulo 2.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions 7-17

example

shift operators <<, >>

one's complement ~

— Assignment Operators

simple assignment
operator

C = N ° MASK;

Only if the corresponding bits in N and MASK differ, the
bit in C will be set to one:

If N = 1101
and MASK = 1010
then C = 0111

The expression E1<{<E2 shifts the bit pattern of El1 E2
bits to the left. The vacated right bits are filled up
by zeros. The expression E1>>E2 shifts the bit pattern
of E1 E2 bits to the right. If El is unsigned, the va-
cated left bits are filled up by zeros (logical shift).
Otherwise, if El is a signed integer value, the shift is
arithmetic.

The right operand is converted to an int value and the
result has the type of the left operand. The result is
undefined, if the right operand is negative, or if the
length of the left operand in bits is less than the
value of the right operand.

The unary operator ~ supplies the one's complement of an
integer. It sets each 1-bit to 0 and vice versa.

The simple assignment operator = assigns the value of
the right operand to the left operand. The left operand
must be an expression referring to a manipulatable
region of storage. If both operands are arithmetic types
the type of the right operand will be converted to the
type of the left operand before the assignment. Contrary
to other programming languages, assignment operations
are also allowed in expressions (e.g. parameter expres-
sions, array subscripts, arithmetic expressions, etc).

— Note
One of the most popular errors is to mix up the
simple assignment operator = and the comparison
operator ==. For example, in the if clause

if (x=1)

the result is always true, because x is assigned
the value 1 instead of being compared to 1.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

7-8 Operators and Expressions

compound assignment The simple assignment operator may be combined to a
compound assignment operator (op=) with one of the
operators following binary operators:
Y A SRR SO DT S
El op= E2

is equivalent to

El = E1 op (E2)

Note
When using a compound assignment operator El is
only evaluated once. Furthermore, the brackets
around E2 are necessary.

types of operands The left operand of the += and -= operators may be a
) pointer. For all other assignment operators the operands
must be simple types.

examples

Ali++] += 3;°
is equivalent to

Ali++] = A[i] + 3;

X.

=y + 3
is equivalent to

x=x%*(y+3);

ali+j*n] += b[i];

is equivalent to

afi+j*n] = a[i+j*n] + b[i];

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions

— Conditional Operator

E1 ? E2 : E3

examples

In a conditional expression

EXPRESSION1 ? EXPRESSION2 EXPRESSION3;
EXPRESSION1 is evaluated first. If it is non-zero the
result is the value of the second expression, otherwise
that of the third expression. Only one of the second and

third expressions is evaluated.

The operands may be simple types, structures or poin-
ters. Remember that a pointer can only be compared to a
pointer of the same type or to zero. The usual conver-
sions will be performed to bring the second and third
expression to a common type, which will be the type of
the result as well. If one of the operands is a pointer
the result type is also a pointer.

® The following statement assigns the maximum of Y
and Z to X:
X=(Y>Z)?Y : Z;

It is equivalent to:

if (Y > Z)
X =Y
else
X = Z;

" ");

e printf ("%d %s", i, column==80 ? "\n" :

~— Sizeof Operator

SIZEQF EXPRESSION:

The unary operator sizeof is used to determine the size
of an object in bytes. The object may be a variable, an
array, a structure or the name of a simple type or
structure.

—]

sizeof

expression

type name

The syntax of an expression is described on page 7-13.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions

The result type of a sizeof operation is int. A sizeof
expression can be used anywhere an integer constant is
allowed. Its major use is in communication with storage
allocation and I/0 functions.

examples struct S1 {
char compl; /* char takes 1 byte */
char *comp2; /* a pointer takes 4 bytes */
} are[] = {
'17'"A"'
'2|'"B'l'
'3',"0“'
v“o'nDn }:
int NRLINES;

NRLINES = sizeof(arr) / sizeof(struct S1)
/® NRLINES now contains the number of */
/* reserved rows (20/5 = 4), */

— Comma Operator

Two expressions separated by a comma are evaluated from
left to right. The type and value of the result are the
type and value of the right operand. Most often the
comma operator is used in for statements.

examples The following statement is taken from the example on
page 6-7:

for (j=i, k=0; t[k]t='\0" && s[jl==t[k]; j++, k++)

note
The comma separating function parameters, variables
in declarations, etc. is not a comma operator.

— Associativity and Priority of Operators

Operators can group their operands left~to-right or
right-to-left. Left associativity (left-to-right) means

that brackets are implicitly set from the left and vice
versa.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions 7-11

example Additive operators group left-to-right, therefore:

a+b-c+d
is equivalent to

((a+b)-c)+d

The table on the next page lists the operators in the
sequence of their priority, starting with the highest
priority.

The operator (type) in the second line of the table
represents the cast construct as described on page 3-16.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions

ASSOCIATIVITY AND PRIORITY OF OPERATORS

OPERATOR

ASSOCIATIVITY

PRIORITY

primary

unary

binary

0 0 -

(type) sizeof

<< D

N
”~
n
v
v
i

14

left-to-right

right-to-left

right-to-left

left-to-right
left-to-right
left-to-right
left-to-right
left-to-right
left-to-right
left-to-right
left-to-right
left-to~-right
left~-to-right
right-to-left
right-to-left

left-to-right

highest
priority

lowest
priority

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions 7-13

== Expressions

Now that we have explained all operators we can define
the syntax of an expression:

EXPRESSION:
constant
tern
expression binary operator expression =
term assignment operator expression —-
expression ? expression : expression
4
T term
o]
term T
m —
L
!_ expression
] :
type Il‘ expression

—-E—o- expression)

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

7-14

identifier

array

function

pointer

structure reference

structure pointer

reference

order of evaluation

type of an expression

Operators and Expressions

A term is defined as:

TERM:

identifier

expression

!
g
= +
]
|:T:|

term

expression

expression

identifier

term - identifier

term ——*III——————————

|
i
,+Lu

|

The order of evaluation of an expression depends on the
priority and associativity of its operators. If opera-
tors of the same priority are involved, the order of
evaluation is undefined, which means that side effects
could occur (e.g. by assignments or function calls).
Expressions involving commutative and associative opera-
tors (®*, +, &, |.) may be rearranged by the compiler,
even if brackets were used. To force a particular order
of evaluation you should use assignments to temporary
variables.

The type of an expression is determined according to the
rules of implicit type conversion {see page 3-5).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Operators and Expressions T7-15

A constant expression is an expression that involves
only constant integer or char values. Such expressions

constant expression are evaluated at compile time, rather than at run time.
They may be used anywhere a constant is required, e.g.
as an initialiser.

CONSTANT EXPRESSION:

integer constant

character constant

enumeration constant

sizeof expression

constant expression

constant constant
expression binary operator —+-expression

]
L

constant expression

-]
L

constant constant constant
l— expression expression —ﬂ-—- expression (—

The constants used in the above syntax diagram are
described on page 2-7.

Note
The binary operator in the middle of the above
syntax diagram must not be comma (,).

example arr [100+ (sizeof(int)==4) ? 4 : 2]

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Program Structure and Control Flow 8-1

Chapter §

Program Structure and Control Flow

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Program Structure and Control Flow

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Program Structure and Control Flow 8-3

== Program Structure

statements

functions

function main

compound statement

blocks

== Expression Statement

assignments or
function calls

examples

In C, the format of a program is free. This means, that
several statements may be written on one line; or, one
statement may be spread over several lines. The end of
a statement is recognised by a semicolon.

As functions may not be declared within other functions,
C has no block structure like, for example, PASCAL. Each
program consists of one or more functions, always con-
taining a function called main. From the function main
other functions may be called.

Note
The first function of a program must be called main.

The braces { and } are used to group declarations and
statements together into one compound statement or
block. At the beginning of a block variables may be
declared and initialised. This applies for functions as
well as for other inner blocks.

The syntax of a block is described in the chapter
"Functions" on page 6-i4.

In the following sections the d fferent statements
will be described in detail. The last section of this
chapter gives an overview of all statements.

The expression statement is the statement used most
often. It is an expression, as explained in the previous
chapter, followed by a semicolon.

Usually expression statements are assignments or func-
tion calls.

pl = a; p2 = b; p3 = ¢;
f1 (pl, p2, p3);

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

8-4 Program Structure and Control Flow

== Tf Statement

As in other programming languages the if statement is
used to decide between two or (if nested) more alterna-
tives.

IF STATEMENT:

expression statement

else statement

If the condition is true, i.e. if the value of the ex-
pression is non-zero, the statement after if will be
executed. Otherwise, if the value of the expression is
zero and if there is an else part, the statement after
else is executed instead. If the value of the expres-
sion equals zero and there is no else part, execution
continues with the statement after the if statement.

shorter code Since an if statement tests the numeric value of an
expression,

if (expression != 0)
can be abbreviated to
if (expression)

An else part always belongs to the inner if. To force a
different association you have to use braces.

example if (TRUE) { /* If TRUE is unequal zero */
if (X < Y) /* and X is less than 7Y, */
A = B; /* A gets the value of B. */

}
else /* If TRUE equals zero, */
A =C; /* A gets the value of C. */
/* The meaning of above sequence changes when */
/* you leave the braces: */
if (TRUE) /* If TRUE is unequal zero */
if (X < Y) /* and X is less than Y, */
A = B; /* A gets the value of B. */
else /* If TRUE is unequal zero, */
A =Cy /®* but X is not less than Y, */
/* A gets the value of C. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Program Structure and Control Flow 8-5

== Switch Statement

SWITCH STATEMENT:

The switch statement is another way to select between
different alternatives, especially if you want to test
whether an integer expression equals one or more con-
stants.

switch (expression) case statement ——

A case statement is defined as:

CASE STATEMENT:

flow of control

default

case

—-

constant expression

]

statement ﬂ-—‘

default

The result of the expressions above must be an integer
value (including char).

Each of the case constants (or constant expressions) may
only appear once in & switch statement, i.e. the values
of the constant expressions must be distinct.

The execution of a switch statement starts with the
evaluation of the expression, which is then compared to
all case constants. If one of the case constants is
equal to the value of the expression, control is passed
to the statement following this constant. From this
statement on, all other statements of the case statebe
ment will executed and the case and default prefixes
will be ignored. You can leave the switch statement by
a break statement (see page 8-8).

If no case matches and there is a default prefix, the
associated statement will be executed.
If no case matches and there is no default prefix, the

execution of the program continues with the statement
after the switch statement.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

8-6 Program Structure and Control Flow

example - #include <stdio.h>
main ()
{
int DIGIT;
printf ("Please type a number from O to 4\n");
DIGIT = getchar();
switch (DIGIT) {
case '0' : printf ("Case O\n"); break;
case 'l' : printf ("Case 1\n"); break;
case '2' : ;
case '3' : printf ("Case 2 or 3\n"); break;
case '4' : printf ("Case 4\n"); break;
default : printf ("Default: not O..4\n");

printf ("End of switch statement\n");

= ,00pS

In C, there are three kinds of loops:
e the while statement
® the do statement

e the for statement

—— While Statement

The while statement is a loop which is executed as long
as the value of the expression is non-zero.

WHILE STATEMENT:

—while expression) statement j—

The expression is evaluated before the execution of the
dependent statement. So, if the condition is false right
from the beginning, the statement will not be executed
at all.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Program Structure and Control Flow 8-7

— Do Statement

DO STATEMENT:

— For Statement

Unlike the while loop the condition of the do loop is
tested after the execution of the dependent statement.
This means, that the statement is executed at least
once.

statement |~{while (expression) ;

FOR STATEMENT:

The for loop is very similar to the while loop. However,
the for loop is often preferred when there is a simple
initialisation and reinitialisation. 1t keeps the loop
control statements close together and visible at the top
of the loop.

-—for-%}}

expression

_j r] _j Lr'—l_l D—J statement

expression expression

initialisation

condition

reinitialisation

The first expression is only executed once, and well
before the loop starts. Generally, it is the initiali-
sation of the control variable.

The second expression is the condition controlling the
loop. It 1s evaluated before the loop starts. The loop
will be repeated as long as its value is non-zero. Its
default value is one. This means, when the second ex-
pression is missing, you have to leave the loop expli-
citly with a break, goto or return statement (see
pages 8-8, 8-9 and 6-6).

The third expression is executed after each iteration.
In general, it reinitialises the control variable.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

8-8

example

== Break Statement

Program Structure and Control Flow

As you can see from the syntax diagram all expressions
are optional. If you omit one or more expressions do not
forget to specify the semicolons.

The statement at the end is mandatory. If there is no
dependent statement you must at least specify the semi-
colon (empty statement).

The following shows the equivalence between a for and a
while loop:

for (expressionl; expression2; expression3)
statement

is equivalent to

expressionl;
while (expression2) {
statement
expression3;
del(S,L) /* delete L in string S */
char S[];
int L;
{
int i,j;
for (i=j=0; S[1i] != '"\0'; i++)

if (S[1] != L)
S(j++]1 = s[i];
s[3] = '"\0";

The statement break; is used to leave a loop or a switch
statement immediately. The execution continues with the
statement following the innermost surrounding loop or
switch statement. An example is given on page 8-6.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Program Structure and Control Flow 8-9

== Continue Statement

The statement continue; may only be used within a loop
(while, do, for). It causes the next iteration of the
enclosing loop to begin. For a while and a for statement
this means that the condition is tested again; in a for
loop the control variable is reinitialised.

== GCoto Statement

label

example

GOTO STATEMENT:

In C, each statement may be labelled. A label has the
same syntax as any other identifier. It precedes a
statement and is followed by a colon.

PART_1 : for (i=0; i<N; 4di++) { ... }

The goto statement causes a jump to a specified
label.

—~ goto identifier f—

Formally, the goto statement is not necessary and it is
good programming style to avoid it wherever possible.

However, there are a few situations where a goto state-
ment may be useful, e.g. to leave two loops at once or
to jump to an error handling part.

Note
A goto statement must always be a local jump.
For global jumps you can use the functions setjmp
and longjmp (see page 13-73).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

8-10 Program Structure and Control Flow

== Syntax of a Statement

STATEMENT:
[
L
expression [~
—- return
__.- break
—+ continue ’
goto identifier
E
switch
while
E
for
block
identifier H statement

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The C Preprocessor 9-1

Chapter 9§

The C Preprocessor

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The C Preprocessor

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The C Preprocessor

== Preprocessor Commands

starting character #

9-3

The C preprocessor offers the following extensions to
the C language:

e macro definitions (text replaéement)

e file inclusion

e conditional compilation

® line control for error handling and debugging

® page skip

Lines starting with the character # are recognised as
preprocessor command lines. Preprocessor commands are
executed before compilation. They have their own syntax,
which is independent of the C language; especially they
do not end with a semicolon. Furthermore, they may
appear anywhere in the program text and are valid from
the place of appearance until the end of the appropriate
source file (independent of other scope rules).

Note
Preprocessor commands in the source file must start
with a hash (#).

To see what the C preprocessor does exactly, you can
give the compiler command preprocess. Your source file
will then be output including replacements, include
files, etc. More about this in chapter "Compiler com-
mands" starting on page 10-3.

= Macros

text replacement

With the command define you can define a macro which
causes the preprocessor to replace a specified identi-
fier (with an optional parameter list) by a given text.
The identifier will be replaced anywhere it appears in
the source file, except in strings and comments.

Note
Redefinitions of macro identifiers are allowed. If
the definitions are not identical, you will get a
warning and the last definition will be taken.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

9-4

The C Preprocessor

symbolic constants

example

define identifier
L—{E identifier [{%J replacement

-
L

The identifiers obey the syntax rules for C identifiers
(see page 2-4). The first blank or equal sign following
the first identifier is interpreted as a separator be-
tween the text to be replaced and the replacement. So,
to be recognised as an entity a parameter list must
follow the identifier immediately. The number of formal
and actual parameters must be the same.

The replacement text is arbitrary. If no replacement is
given, the identifier will be replaced by nothing. Such
definitions are useful for conditional compilation, when
testing whether an identifier is defined or not (see
page 9-8).

Most often define commands are used to define symbolic
constants at the beginning of the program.
#define MAXLINES 60

main()

{

int line;

if (line > MAXLINES)

{
printf ("MAXLINES = %d\n", MAXLINES);
/* As it is part of a string the first */
/* MAXLINES in above statement will not be */

/* replaced. */

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The C Preprocessor

ID(parameter_list)

example

side effects

continue command
on next editor line

macros in the
user interface

9-5

Below you find an example where the text to be replaced
consists of an identifier with a parameter list.

#define MAX(A,B) ((A) > (B) ? (A) : (B))
The line
m = MAX(r+s,t+u);
will be replaced by
m = ({r+s) > (t+u) ? (r+s) : (t+u));

The definition above provides a 'function' that may be
used for any data type. To avoid side effects and to
ensure the intended order of evaluation you should set
brackets very carefully.
If an editor line is too short for a macro definition
you can continue on the next line by placing a backslash
(\) at the end of the line to be continued.
In addition to defining macros in a source file you can
also define them directly in your user interface (see
also page 11-9). Identifiers of so defined macros will
be replaced in any program to be compiled under your
user. To enter definitions into this user interface you

1. call the C compiler with the SINTRAN command

enc !
2. give the define command as described above, but

leaving the initial #, e.g.

NC: define YES 1 «~J

3. save the macro permanently in your user interface
by entering the command

NC: save-compile-parameters «~!

4. activate the definitions by the command

NC: initialize-compile-parameters «

If you do not specify a filename after the two
commands above the default file NC-A:INIT will be
used.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

9-6

delete a macro

example

== File Inclusion

The C Preprocessor

The preprocessor command undef deletes a previously
defined macro:

——undef —~identifier —

From this command line onwards the specified identifier
will no longer be replaced. Parameters, if any, need not
be specified.

#define NR 100

main()
int X,Y;
{ X = NR; /®* NR will be replaced by 100 */
#undef NR
Q.; NR; /* here, NR is not defined as a macro */
} .

An include command line will be replaced by the
contents of the specified file.

I file name "

include

file name >

The file name may be written in SINTRAN or UNIX
notation (see page 13-5).

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The C Preprocessor 9-7

user / directory

Note
A user under SINTRAN, with or without directory
specification, corresponds to a directory under
UNIX. When talking of users in this manual, we
always refer to the SINTRAN user.

file search If the file name in an include command does not specify
a user, a search according to the following rules takes
place:

e If the file name is enclosed in quotes (".."), the
file is searched for under the following users in the
sequence as stated:

1. the user under which the main file is compiled

2. the user under which you are logged in

3. the user(s) you specified with the compiler
command directory (see page 11-9)

C system user CAT-NC-500 4, the C system user CAT-NC-500:
Under this user so-called header files are
stored, which contain macros and definitions

used by the C library functions (see page
13-3).

e If the file name is enclosed in angle brackets,
the file is only searched for under:

1. the user(s) you specified with the compiler
command directory (see page 11-9)

2. the C system user CAT-NC-500

example Each source file containing function calls to the
standard I/0 library should start with:

#include <{(stdio.h>
The file stdfo.h is a header file stored under the

C system user CAT-NC-500 and contains definitions of
macros and variables used in the standard I/0 library.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

9-8 The C Preprocessor

Another typical example of an include file is to combine
general macros and variable declarations, which can then
be used by several source files.

example Assuming a file GEN-DEF is stored under a special user
COMMON, which is entered into your user search list with
the compiler command directory. An include command in a
program stored under your user would then be coded as:

#include <GEN-DEF>

An include file may include other files up to a maximum
depth of nesting of 10. For clarity's sake, files should
always be included at the top of a source file.

Note
Identifiers of macros defined before an include
command will be replaced in the included file as
well,

== Conditional Compilation

With the following set of preprocessor commands you can
exclude certain parts of your source file from compila-
tion. This may be useful in order to generate different
program versions from the same source.

There are three commands, which test a condition:
1. The command

EE}———constant expression

checks whether the constant expression has a non-zero
value.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The C Preprocessor 9-9

2. The command

—Jifdef —|identifier ——

checks whether the tdenti{fier is currently defined in
the preprocessor (by a previous define command).

3. The command

——-ifndef identifier ——

checks whether the identifier is currently unde-
fined in the preprocessor.

After an arbitrary number of lines, each of these three
tests may be followed by the command

else

The whole construct is terminated by the command

endif

If the condition, checked in one of the three tests, is
true, i.e.

1. the constant has a non-zero value, or

2. the identifier is defined in the preprocessor, or

3. the identifier is undefined in the preprocessor,

then all lines between an else and the endif will not be

compiled. If the condition is false, all lines between
the test and an optional else or endif will be ignored.

These tests may also be nested.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

9-10

== [.ine Control

== Page Skip

The C Preprocessor

The line command 1s implemented in order to be compa-
tible with other C compilers. Usually, error reports
from the compiler refer to the editor line of the source
file. The preprocessor command line gives a source line
an absolute value:

—{1ine —+{constant file name

The constant in this command defines the number of the
next line and will be used as a new base for counting.
The optional f{le name may designate the name of the
source file. However, under SINTRAN the file name is
ignored.

The command

page

causes a page skip in a printout of the source file.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The C Preprocessor

== Predefined Macros

example

In order to facilitate user error handling the following

identifiers are predefined in the preprocessor:

° LINE
This identifier will be replaced by the current line
number of the source file.

e _FILE
This identifier will be replaced by a string con-
taining the current source file name enclosed in
quotes.

e _DATE _
This identifier will be replaced by a string con-
taining the current date enclosed in gquotes.

e _ TIME _
This identifier will be replaced by a string con-
taining the current time enclosed in quotes.

e SIN3 and ND500
These two macros are flags that are set to 1. They
can be useful when having a source file which is to
be compiled on different machines or under different
operating systems. For example, machine-dependent
code can be introduced by the preprocessor command

1f ND500

so that the dependent statements will only be com-
piled on a ND~500 machine. The equivalent applies to
the flag SIN3, which refers to the operating system
SINTRAN III.

main()
{
int lineno:
char *file_name;

lineno = _ LINE_ ;
file_name = _ FILE_ ;
printf ("Xs X¥s\n". _DATE_ , _ TIME_):

printf ("file name = Zs\nline number = %d\n". file_name. lineno);

}
The output will look like:
Sep-30-86 09:43:55

file name = (DIR-NAME:USER-NAME)OBJECT-NAME:FILE-TYPE; VERSION
line number = 6

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Extensions for System Programming 10-1

Chapter 10

Extensions for System Programming

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

10-2

Extensions for System Programming

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Extensions for System Programming 10-3

=== Monitor Calls and Machine Instructions

Machine Instructions

example

If you want to call monitor calls (SINTRAN system func-
tions) or machine instructions from your C program you
have to specify them as external functions (see "extern
specification"” on page 4-8). To distinguish monitor
calls and machine instructions from other ordinary func-
tions, the identifier in the extern specification must
be followed by a hash (#) and an integer constant.

—identifier # integer constant f——

The hash and the integer constant must only be given in
the extern specification; in the call itself you just
specify the identifier.

The identifier may be freely chosen by you, while the
integer constant must represent the number of a monitor
call or machine instruction. Numbers less than 1000
refer to monitor calls; all other numbers are taken as
numbers of machine instructions.

main()

{

extern leave-program#0();
extern double n500-sqrt#1204();

if error
leave-program() ;

Note
Parameters to monitor calls have to be passed by
reference, i.e. they must be pointers or arrays.

Detailed descriptions of existing monitor calls can be
found in the SINTRAN III Reference Manual or the SINTRAN
III Monitor Calls manual. Machine instructions are
described in the ND-500 Reference Manual.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

10-4

monitor call interface

Extensions for System Programming

As the parameter passing in monitor calls is machine-
dependent you should try to avoid the way of calling
described above. If the monitor call wanted is inte-
grated in the interface for monitor calls (see page
15-3) you should use this one. The monitor call inter-
face guarantees a uniform interface for ND-100 and
ND-500, which may be of interest in future releases when
C is also available on the ND-100.

== Register Variables

Register variables are variables with absolute addres-
ses, as such allowing access to machine registers (see
table on the next page). They are declared as any other
variable, the only difference being that the variable
identifier has to be followed by a postfix, i.e. a hash
(#) and an integer constant representing the number of a
register. This postfix must only be specified in the
declaration of the variable.

——{identifier —[ﬂ— integer constant ——

When using registers you should take into account that
the compiler itself uses the same registers (e.g. for
calculating operations or function calls). If, for
example, for an assignment a conversion is required, the
computer could destroy the registers used. The use of
register variables strongly depends on the structure of
the machine instructions of the processor. Detailed
descriptions can be found in the ND-500 Reference
Manual.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Extensions for System Programming

example

ND-500 HARDWARE REGISTERS

NUMBER REGISTER

0 program_counter

1 L-register

2 Bl-register

3 B2-register

4 TOS-register

5 "low-limit-trap"-register

6 "high-limit-trap"-register
"trap-hard-address"-register

8-11 4 working registers for integer
12-18 4 working registers for floating point
20 status-register-1

21 status-register-2

22 own-trap-enable-register-1

23 own-trap~enable-register-2

24 mother-trap-enable-register-1

25 mother-trap-enable-register-2

26 child-trap-enable-register-1

27 child-trap-enable-register-2

28 trap-enable-modification-mask-1-reg.
29 trap-enable-modification-mask-2-reg.
30 current-executing-domain-register
31 current-alternative-domain-register
32 process-segment-register

In order to examine the first status register you
can use the following code:

main()
{

int status, machine_status#20;

status = machine_status;
if (status == error_code)

}

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

10-5

10-6 Extensions for System Programming

== Stack initialisation

Initstack installs an own stack for a C module. This is
only needed when mixing C modules into programs written
in another language as for instance COBOL, PLANC or
FORTRAN. It will solve problems of stack conflicts or
stack overflow.

example static int stack(1000}; /* the size of the stack will be 4000 */
/* bytes the stack must be a static */
/*® variable */

extern vold Initstack#13100():

void pl(})
{
initstack(&stack,sizeof(stack)); /® parameters to initstack are
1. the address of the stack
2. the size of the stack */
printf("this i{s pl\n"):
}

main()

{

printf("main calling pl with init-stack\n");
pl();

printf("back in main \n");

}

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking 11-1

Chapter 11

Compiling and Linking

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

== Conflicts between C source file names and routine names

argument list

== Compiler Invocation

command mode

exit

help

11-3

To say it short: you should avoid to have a routine name
in your C source program which is identical to the file
name except for "-" and "_" characters.

When a C program is started the program name has to be
made the first character of the argument list. As under
SINTRAN the name of the started program is lost, the
program name has to be fixed at compile time. At this
time only the name of the source file is known.

The following changes take place when the source file
name is converted to the program name. The file exten-
sion is left out and all '-' characters are changed to
' ' characters with respect to the debugger.

If, after these changes, the name of the program equals
that of the a routine, the LINKAGE-LOADER will output a
"redefinition ignored" which means that the definition
of the routine is lost. When the program is started in
spite of the warning the runtime error "instruction
sequence order" will occur when the routine with the
conflicting name is called.

You invoke the compiler from SINTRAN by giving the
command:

enc

The compiler prompts with the notification of the
version in use and on the next line NC:

Norsk Data C - Version: AO6 - 1989-01-10
NC:

Now you are in compiler command mode, i.e. you can give
commands to the compiler. Parameters may be given either
in the command line or in the dialogue. Compiler com-
mands and their paremeters may be abbreviated to their
shortest unambiguous form.

To leave the compiler command mode and return to the
operating system you give the command:

NC: exit ~!
The command help gives you a list of all available

compiler commands, which will be described in the
following sections:

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

NC: help -

command: «J

cc

help <command: >

exit

preprocess <source file: >,[<list file: >],[<output file: >]
check <source file: >,[<list file: >],[<CAT file: >]
generate-code <CAT file: >,<object file: >

compile <source file: >,<list file: >,<object file: >

link <source file: >,<{program: >

cross <source file: >,<{cross reference file: >,<lines per page: >
format <source file: >,<new source file: >

value <definitions / options / libraries: >

define [<macro identifier [(identifier,...)}]: >],[<replacement: >]
undef [<macro identifier: >]

directory [<include directory/user: >]

options <option: >...

page-length [<lines: >]

library <library file: >...

initialise-compile-parameters [<initialisation file)]
save-compile-parameters [<initialisation file: >]

clear

@<SINTRAN-command>

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

== Compiling a Program

There are several possibilities:

® You can have your program processed by the prepro-
cessor only.

® You can compile your program without producing an
object file. Instead of this a temporary CAT file
containing intermediate code will be produced, which
may be used afterwards to generate the object code.

e You can compile your program and produce the object
code with a single command.

@ You can compile and link your program with a single
command .

-—— Preprocess

source file

list file

output file

When giving the command

preprocess <source file: >,[<list file: >],
[<output file: >]

the source file will only be processed by the C prepro-
cessor, i.e.

® The syntax of preprocessor commands will be checked.

® Macro identifiers will be replaced wherever they
occur.

e include commands will be replaced by the contents
of the file specified.

Here you have to state the name of the source program to
be processed. The default types of the source file are
:C and :SYMB, :C being the primary type.

The list file will contain error messages of the prepro-
cesgor. If no file is specified the terminal will be
taken as output device.

If no output file is specified, the output will be

written to the terminal. The output file does not con-
tain source file comments.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

— Check Source Code

source file

list file

CAT file

Compiling and Linking

The command
check <(source file: >,[<list file: >],[<CAT file: >]

compiles the program specified as source file, but does
not produce an object file.

The source file is the name of the program to be com-
piled. The default file types of the source file are :C
and :SYMB, :C being the primary type.

The list file will contain error messages of the com-
piler. If no file is specified the terminal will be
taken as output device. If-a lfst file is specified and
the program is compiled with option a+ (see page 11-12)
it will also contain a program listing.

The CAT file is a temporary file containing interme-
diate code. It may be used as input file for the command
generate-code (see below). If no CAT file is specified,
the output will be written to a temporary file named
SCRATCH-0QONNN:CAT, where NNN is your terminal number.
This file will be overwritten by the next check or
compile command.

— Generate Code

The command
generate~code <CAT file: >,<object file: >

takes the specified CAT file which results from a
previous check command and produces an object file.

If no CAT file is specified the file SCRATCH-OONNN:CAT
will be taken as input. If no object file name is given,
the object code will be written to a temporary file
named SCRATCH-OONNN:NRF, where NNN is your terminal
number.

This command is particularly implemented for future

releases when operations on the intermediate code will
be possible.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

11-7

— Compile

source file

list file

object file

— Compile and Link

The command
compile <source file> <list file> <object file>

compiles the program specified as source file
directly producing the object code.

The source file is the name of the program to be
compiled. The default file types of the source file
are :C and :SYMB, :C being the primary type.

The 1ist file will contain error messages of the
compiler. If no file is specified the terminal will be
taken as output device. If a list file is specified
and the program is compiled with option a+ (see page
11-12) it will also contain a program listing.

The object file is the file in which the object code
will be stored. The default type of the object file
is :NRF. If no object file name is given, the output
will be written to a temporary file named
SCRATCH-OONNN:NRF, where NNN is your terminal
number.

source file

program

The command
link <source file: >,<program: >

compiles and links the program specified under source
file. Libraries which have to be loaded in addition to
the C library can be specified in the user interface
with the command library (see page 11-13).

The source file is the name of the program to be
compiled. The default file types of the source file
are :C and :SYMB, :C being the primary type.

Here you specify the name of the executable program. It
will be stored in a domain with the name specified.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

11-8

== Source File Listing

structuring errors

format source file

Compiling and Linking

The command

cross <source file: >,<{cross reference file: >,
<lines per page: >

produces a formatted program listing of the specified
gsource file. Each page of the listing starts with two
header lines containing the actual date and time and
information about the file. If the number of lines per
page is not given, the value specified with the compiler
command page-length (see page 11-12) or the

default value of U8 lines will be taken.

In the left margin of the listing the level of nesting,
the source line number and the program line number are
given. The source lines will be indented according to
the level of nesting.

Errors in the block structure will be indicated with the
message ERROR IN BLOCKSTRUCTURE at the place of occur-
rence. If no error is found, the message NO ERROR IN
BLOCKSTRUCTURE will be output at the end of the file.
If the cross reference file is a printer, keywords
will be bold printed.
The command

format <{source file: >,<new source file: >
produces a formatted source file, where the lines are
indented according to the level of nesting. Structuring

errors will not be reported.

The new source file must be different from the old
source file.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking 11-9

== Compile Parameters

— Definitions

The command
value definitions

gives a list of all macro definitions and directory
specifications currently defined by you in the user
interface.

As you already know, macros cannot be defined and
deleted in a source file only, but also in your user
interface (see description of the commands define and

define, undef undef beginning on page 9-3). Given as a compiler
command in your user interface these commands must not
start with a hash (#).

directory With the command
directory [<include directory/user: >]
you can specify a SINTRAN user (or UNIX directory) for

default file searching. The sequence of searching is
described on page 9-7.

— Options

The command
value options
gives a list of all options in the user interface with

their current setting. The list below shows their
default values:

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

11-10

default options

change option value

example

record alignment (ax)

float arithmetic (f)

Compiling and Linking

NC: value options «J

options:
target machine is ND-500 (m2)
4 byte record alignment (alt)
double arith. for floats (£-)
64 bit real (rl)
with line numbers (1+)
with symbolic debug (d+)
with procedure names (n+}
without subrange check (s-)
without pointer check (p-)
without index check (i-)
without overflow check (o-)
without profiling {pr-)
externals as common (ic+)
with library mode (1lm+)
without trace (t=)
without complete listing (a-)
with local optimization {lo+)

page length is 48 lines

You can change the value of an option by the command
options <option: >...

To switch on an option you specify the letter of the
option wanted followed by a plus sign.

To switch off an option you specify the letter of the
option wanted followed by a minus sign.

EXCEPTIONS: Do not change options m and r. They are
implemented for future releases only.

If you want to change the values of several options with
one command, you have to separate them by a comma or a
blank.

With the following command you activate option pointer
check and reset option line numbers:

NC: options p+,1-«!

Option ax provides the opportunity to align records

on one~-byte (x=1), two-byte (x=2) or by default four-
byte (x=4) boundaries and thus to optimise the code
generated for the ND-5000 computers. In the AQO-version
of the NC compiler default was one-byte alignment.

C defines that all float operations are carried out with
double precision, i.e. before computation all float
variables are converted to double whereas the result is
converted to float. With the option f set to f+ these

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

line numbers (1)

symbolic debug (d)

procedure names (n)

subrange check (s)

pointer check (p)

index check (1)

overflow check (o)

11-11

conversions are omitted except for actual function para-
meters thus speeding up float operations. With the
option set to f- the float-to-double conversion is
performed.

If a program is compiled with option 1+, the number of
the error line will be output when a runtime error
occurs. The line numbers are stored in a table generated
by the compiler, which is part of the data area; the
program area and thus the execution time remains
unchanged.

When executing a program compiled with option d+, the
runtime system generates symbolic debug information (see
Symbolic Debugger User Guide).

If a program is compiled with option n+, the name of
the function in error will be output when a runtime
error occurs. Like line numbers, name information is
stored in the data area of the program.

For a better error check the following four options

(s, p, £ and o) should be switched on when compiling

a program for the first time. As they generate additio-
nal code, they should be switched off before the final
compilation of the program. This makes the executable
program smaller and faster.

When executing a program compiled with option s+ the
runtime system will check whether values of variables on
the left side of an assignment exceed their ranges. For
example, if you assign an integer value greater than
+32767 to a short variable, the program will abort with
the message "subrange or index out of range".

When executing a program compiled with option p+,

the runtime system checks, whether pointers used as
references are unequal 0 and point to a legal address.
If not, the program will abort with the message "pointer
with nil value".

When executing a program compiled with option i+, the
compiler checks whether array indices are in the defined
range. If not, the program will abort with the message
"subrange or index out of range". Pointer arithmetic to
access arrays is not checked by this option.

When executing a program compiled with option o+, it is
checked whether intermediate arithmetic results exceed
the range of 4-byte integers or double values. When an
overflow occurs the program aborts with the message
"real arithmetic overflow".

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

11-12

profiling info (pr)

erternal variables (ic)

library mode

trace (t)

complete listing (a)

Compiling and Linking

If option pr is set to pr+, at runtime information about
the procedures' and functions' calling hierarchy is
written to a file. This information is evaluated by a
program called CAT-Profile (ND-no. 211565). The profile
information is only of use with this new product.

If you want to export variables to or import variables
from FORTRAN Zc¢ should be set to fc+. In this case
exported and imported variables are treated as FORTRAN
common blocks like they were in all NC versions before
AQ6.

With the option set to ic- exported and imported vari-

ables are handled in the way PLANC does. If you want to
export variables to or import variables from PLANC the

option should be set to ic-.

If optién {c~ 1s set variables will be handled as
described in the following table

declaration handled as
extern int i; import
int i = O3 export
int i; common

If a variable is not initialized in the declaration part
it is treated as a common variable. It has to be decla-
red in each module where it is used.

If it 1s declared with the storage class identifier
extern it will be treated as an imported variable. Each
imported variable must be exported from and initialised
in one and only one module.

If it is declared without a storage class identifier and
initialised in the declaration part it is treated as
exported variable. In this case it must be imported by
another module.

With option Im+ (default) library marks are written to
all modules. Option lm- (no library marks) allows the
linkage-loader facility reilcad to be used.

When being compiled with option t+ the progress of com-
pilation is reported to the user. The report appears on
the specified list fi{le, which is the terminal by
default.

With option a+ the compiler writes a source listing
to the specified list file. This source listing includes
error messages at the places where errors occur.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

11-13

local optimisation (lo) Option lm+ (default) causes an inlinecall instruction

page length

— Libraries

for the library routine strcpy to be used which is much
faster than any software routine or macro. If your
program contains conditional expressions like

"(expr ? strcpy(..) : "string")" option lo has to be set
to lo- as the inlinecall wouldn't work in such a case.

With the command
page-length [<lines: >]

you can change the page length for printer output. The
default length is 48 lines.

— Initialise the User Interface

With the command

value libraries
you can list the libraries defined in your user inter-
face, and which are loaded in addition to the C library
when giving the compiler command link. You can define
additional libraries in the user interface with the
command

library <library file: >...

The library file must be a file of type :NRF.

You can save the current compile parameters in an ini-
tialisation file with the command

save-compile-parameters [<initialisation file: >]

The initialisation file will contain the current setting
of the compile parameters (definitions, options, libra-
ries). Its default file type is :INIT. If no name is
specified, the values will be stored in a file named
NC-A:INIT.
You can create different initialisation files, each for
a different purpose. To activate a certain set of com-
pile parameters you give the command

initialise-compile-parameters [<initialisation file:>]

In subsequent compilations, the parameter values stored

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

11-14

= Comments

example

Compiling and Linking

in the initialisation file specified will be used.

When invoking the compiler an initialisation file will
be loaded automatically:

1. First the compiler tries to load the file NC-A:INIT
of your own user.

2. If the file (OWN-USER)NC-A:INIT is not present, the
compiler tries to load the initialisation file of
user SYSTEM (SYSTEM)NC-A:INIT.

3. Otherwise, if the system initialisation file is not
present either, the compiler defaults as described on
page 11-9 will be taken.

The compiler command
clear

resets the compile parameters to its defaults. All macro
definitions, directories and libraries currently active
in your user interface will be deleted and the option
values will be reset to the compiler defaults described
on page 11-9,

When using a mode job for the compilation or linking of
your program, the command cc introduces a comment line.
(See also SINTRAN III Time Sharing/Batch Guide.)

Enter your mode job COMPILATION in PED:

@CC (2222222222222 22 2222222222}
@cc bt compilation bt
@CC (2222222222222 22222222 X 2 3
@NC

initialise-compile-parameters init-file

cc compile my-source into my-object

compile my-source, ,my-object -
exit

Activate your mode job from SINTRAN:

@mode COMPILATION, ,«~

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking

11-15

== STNTRAN commands

example

When starting a compiler command line with the SINTRAN
prompt sign you can give commands to the operating
system.

@list-files,:c,,

== [, inking a Program

order of loading

Instead of linking your program with the compiler com-
mand link you can also link it with the ND-500 .linkage
loader. In order to link a C program you have to load at
least two libraries:

the C library : NC-LIB:NRF
and the multi-language library: CAT-LIB:NRF

On the ND-500, a program is not loaded into a program
file, but into a domain. If you do not define (or set) a
domain, the executable program is loaded into the tempo-
rary domain SCRATCH-DOMAIN and will be overwritten by
the next loading process without a domain name.

When linking a C main program the following sequence
must be observed for the loading of functions and
libraries:

1. C main program

2. optionally: external routines/functions
(C, FORTRAN and/or PLANC)

3. C library NC-LIB:NRF
4. CAT library CAT-LIB:NRF

5. optionally: ISAM library ISAM-LIB:NRF
SIBAS library SIBAS~LIB:NR F
FOCUS library FOCUS-LIB:NR F

6. optionally: FORTRAN library FORTRAN-LIB: NRF
PLANC library PLANC-LIB:NR F

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

11-16

Compiling and Linking

If the optional libraries exist only as sharable seg-
ments (depending on the installation) the corresponding

segments have to be linked.

Detailed descriptions of the linker and linking process
can be found in the ND-500 Loader/Monitor manual.

example:

Terminal input/output

@ND-500-MONITOR LINKAGE-LOADER

ND~-Linkage-Loader-X

NLL: DELETE-AUTO-LINK-SEGMENT
NLL: DELETE-AUTO-LOAD-FILE

NLL: SET-DOMAIN "test"

NLL: OPEN-SEGMENT "test"

NLL: LOAD-SEGMENT test

Program:xxxxxxPOl Data:xxxxxxD0O1l

NLL: LOCAL-TRAP-DISABLE all

NLL: TOTAL-SEGMENT-LOAD test-module

Program:xxxxxxP0Ol Data:xxxxxxD0O1

NLL: LOAD-SEGMENT NC-LIB:NRF

Program:xxxxxxP02 Data:xxxxxxD02

NLL: LOAD-SEGMENT CAT-LIB:NRF

Program:xxxxxxP02 Data:xxxxxxD02

NLL: DEFINE-ENTRY stack-space,400000,d

NLL: DATA-REFERENCE stack-space,rts stack size,d

NLL: LIST-MAP
Unsatisfied references:

Norsk Data ND-860251.2 EN

Remarks

Call linkage loader

To avoid loading of
FORTRAN library

Name of domain
(SINTRAN notation)

If you want to recompile
and link your program via
the link command.

Load main program
test:NRF

Free storage

To avoid undefined
references for trap
handling

Load module(s)

Free storage

Load C library

Free storage

Load CAT library

Free storage

Define stack size:

400000B
default = 128K bytes

List references

Scanned by Jonny Oddene for Sintran Data © 2011

Compiling and Linking 11-17

None!

Defined symbols:
List of defined entries

Program:xxxxxX P Data:xxxxxx D

NLL: EXIT Return to SINTRAN

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The Command Line 12-1

Chapter 12

The Command Line

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

12-2 The Command Line

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The Command Line

12-3

== General

Command line syntax

== Command line interpretation

— Continuation lines

example

Before a C program starts execution of the function
main, the runtime system interprets the whole command
line.

Everything to be considered concerning the SINTRAN
command line will be described in the following
sections.

program parameter mam

- redirection command

pro-
—gram parameter file
name

—~ command to be exe- ——
cuted on termination

\<CR>

The command line syntax is different between SINTRAN
and the C runtime system. As there is nothing like a
UNIX shell in SINTRAN C has to emulate a shell in order
to be able to interpret a C command line.

Reading of input is continued on the next line, if the
runtime system finds a "\" (backslash) followed by a
carriage return. On the continuation line you are
prompted for input by a ">" (greater than) character.

@ND-500 myprog\d
>here are six more input parametersd

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

12-4

— Execute command after termination

examples

— Redirection of standard I1/0

REDIRECTION COMMAND:

example

The Command Line

A command can be specified in the parameter list which
will be executed after program termination. A ";"
(semicolon) as first character identifies the following
characters as a command to the runtime .system. The
command has to be enclosed by quotation marks, if you
want to pass parameters to the command. A semicolon can
not be passed as first character of a parameter.

@cc call myprog with argl and arg2 and start PED after
@cc program termination

@nd-500 myprog argl arg2 :ped

@cc same as above but call PED with file filel:symb
@nd-500 myprog argl arg2 ";ped filel:symb"d

The default files for standard input and output are the

keyboard and the terminal. When starting a C program you
can give redirection commands to define other files for

standard input and output.

LJ name of standard
input file

name of standard
output file

A "<" (less than) character indicates that input shall
be taken from the file whose name is specified after the
"<" character. If the file does not exist, an error
message is given. A ">" (greater than) character causes
output to be written to the file whose name is specified
after the redirection character. A ">>" sign causes the
output to be appended to the file whose name is given.
If the output file does not exist it will be created.

The characters "<" and ">" are only interpreted as
redirection signs, if they are not embedded between
apostrophes.

Default file type for input and output file is :symb.

@nd-500 myprog <infile:symb argl arg2 > outfile:listd

The program myprog is called with the parameters argl

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The Command Line

— Parameter files

example

upper/lower case
letters

example

12-5

and arg2. Standard input is taken from the file
infile:symb whereas output is written to outfile:list.

The length of the SINTRAN command line is limited to 103
characters (which can be different in following SINTRAN
versions). Since C programs may need argument lists
which exceed this length it is possible to write the
argument list to a file. The name of this file is part
of the command line. It is introduced by a "@". This
implies that a "@" can not be passed as the first char-
acter of a parameter, it can be passed on any other
position if it is embedded between apostrophes. The
maximum number of characters in a parameter file is 2000
(the size of the internal command line buffer).

Line delimiters in the parameter file are treated as
blanks.

@nd myprog argl @para-file:symb arg2d

The program myprog is started with two arguments (argl
and arg2) and a parameter file (para-file:symb).

SINTRAN converts all characters of the command line to
upper case characters. As C is rather based on lower
case characters the command line is internally converted
to lower case letters. A character (a..z) is converted
to an uppercase one by a leading """ . If you need a

""" in a parameter you have to write "°"°"

The conversion to lower case letters does not apply to
continuation lines.

@nd-500 myprog “This Shows, how "character “"\J
>for UPPER case “l"e"t"t"e’r"s "is treated"d

These command lines will call program "myprog" and pass
the following 10 arguments:

0. argument: "SOURCE-OF-MYPROG"

(if the source file name is: "SOURCE-OF-MYPROG:C")
argument: "This"

argument: "shows,"

argument: "how"

argument: "character °"

argument: "for"

argument: "UPPER"

argument: "case"

argument: "LETTERS"

argument: "is treated"

\O OO~ N W N -

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

12-6

(IR

== Program parameters

declaration

parameter syntax

special characters

escape character

The Command Line

SINTRAN ignores a "'" character and all following cha-
racters in a command line. If you want to pass a "'" in
a parameter you either have to write it in a continu-
ation line which is no longer a SINTRAN command line or
have to specify it as octal number ("\O47"). In both
cases it must be embedded in apostrophes and be escaped
by a n\" .

The two arguments "It's not nice" and "that you can't"
can be passed to the C program myprog in the following
way:

@nd myprog " It\O47s not nice"\d
>"that you can\'t""d

If you want to pass arguments from the command line to a
program the function main must be declared with two
parameters usually called "argc" and "argv".

main(argc, argv)
int argc;
char *argv(];

"Argc" contains the number of arguments being passed,
"argv" is a pointer to an array of strings which contain
the arguments. All parameters are passed as strings.

The first argument argv[0] contains the name of the
source file, argv[1l] the first parameter, argv[2] the
second parameter etc..

Parameters have to be separated by blanks. If you want
to pass a blank within a parameter you have to enclose
the parameter by quotation marks (" "),

All parameters containing the following special
characters have to be enclosed by quotation marks:

"\b" back space

"\t" horizontal tab

"\n" new line

"\ f" form feed (line feed)
"\ddd" octal number

If a parameter shall contain one of the characters "\",
""" or "'" the character has to be escaped by a back-
slash ("\\", "\"", "\'"). Special conditions how to pass
an apostrophe you find above.

Parameters containing a "less than" "<" or "greater

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The Command Line 12-7

than" ">" character must be enclosed by quotation marks.
Otherwise input/output is redirected.

@ ; "@" and ";" can not be passed as first character in an
argument. If they occur on another position the para-
meter must be enclosed by quotation marks.

If a """ character shall be part of an argument it has
to be written as """", Otherwise it is interpreted as
"convert next character to uppercase".

You will find the program "prog-to-exec" on page 13-29.
It interprets the command line and lists the arguments

on the terminal. So you can try out different argument
lists and see what happens.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions 13-1

Chapter 13

C Library Functions

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-2 C Library Functions

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

13-3

=== General

-— Header Files

Under SINTRAN, the functions described in this chapter
are all stored in the C library. However, to emphasise
the UNIX function levels, we divided the functions into
two sections. The section "Basic Functions" describes
lower level functions, which, under UNIX, are calls to
the operating system. The section "Standard Functions"
describes higher level functions, which represent the
original part of the C runtime system.

errno. h

stdio.h
ctype.h
math. h
fentl.h

stat.h

setjmp.h

Header files contain macro definitions and function de-
clarations, which are used by the C library functions.
Declarations for related functions are grouped in a
common header file, which you must include in your pro-
gram when calling one of these functions. The include
commands have to be given at the top of your program.
Functions with int or void as result type may be used
without including any header file. Which header file you
have to include in order to use a certain function will
be specified in the individual function description.
Below you will find a list of all header files with a
short description of their contents:

macro definitions of error constants used by the

C runtime system

I/0 macro definitions and function declarations
declarations of character functions

declarations of external mathematical functions
macro definitions used by the function open

macro definitions used by the functions open, stat,

lstat and fstat; prior to stat.h you have to include
types.h (to make some type definitions known) and time.h

declarations of functions that handle global jumps

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-4

memory.h
string.h
time.h

times.h
timeb.h
types. h

varargs. h

— Standard Files

C Library Functions

declarations of memory functions

declarations of string functions

declarations used by time functions

macro definitions for using variable argument lists
(see description of varargs on page 13-101).

There are four standard files, which are implicitly
open:

The standard input file always has the file number O
and is associated with the SINTRAN standard input
device, which is usually your terminal (if you are
in an interactive process).

The standard output file always has the file number
1 and is associated with the SINTRAN standard output
device, which is usually your terminal (if you are
in an interactive process). This file is always
line-buffered.

The standard error file always has the file number
2 and is associated with the SINTRAN error device,
which 1s usually your terminal (if you are in an
interactive process). It is used by the runtime
system for error messages. This file is always un-
buffered, i.e. error messages are sent to your
screen as soon as they are written.

The standard temporary file is the SINTRAN standard
scratch file (SCRATCH)SCRATCHXX:DATA with the file
number 64 (octal: 100). To this file you have read,
write and append access.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

— File Names

13-5

examples

The C runtime system accepts all file names (path names
in UNIX terms) that conform to the SINTRAN naming con-
ventions and which are described in the chapter "The
File System" of the Time Sharing and Batch Guide. The
default file type is :SYMB.

For compatibility reasons UNIX file names are accepted
as well. If the UNIX file name does not contain more
than one directory specification, it is converted to
SINTRAN notation according to the following rules:

® Leading dots (. or ..) will be ignored.

o Directory names, which are separated by slashes (/),
are converted into SINTRAN user names.

® Dots within the name are replaced by dashes (-).

e The last dot is converted into a colon (:), so that
the last part of the file name is taken as the
SINTRAN file type.

e All other characters of an UNIX file name remain
unchanged.

If an UNIX file name cannot be converted or the con-

verted file name still contains invalid characters,
SINTRAN system calls will report an error.

UNIX notation SINTRAN notation

../user/file.name —+ (user)file:name
sys/myfile.h — (sys)myfile:h
/user/a.b.c.list — (user)a-b-c:list

— Notation

FUNCTION

HEADER FILE

The functions are documented in the following way:

The heading FUNCTION gives the name of the function
described. Similar functions are described together.

This heading specifies the header file you have to in-
clude in order to use the function. If no header file is
given, you can use the function without including a
header file.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-6

DECLARATION

DESCRIPTION

RETURN VALUE

NOTES

C Library Functions

The heading DECLARATION specifies the declarations of
the function and its parameters as they appear in the
C library. You need not declare any function in your
program, but only include the header file specified in
the individual description, if any.

Under this heading the function is described.

The heading RETURN VALUE specifies the type of the func-
tion result and describes the values that can be expec-
ted.

The heading NOTES explains special precautions and
particularities of the function described.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

— Error Handling

err™Mmo

0Serrno

13

14

16

17

22

23

13-7

ENOENT

EIO

ENXIO

E2BIG

EBADF

EACCES

EFAULT

EBUSY

EEXIST

EINVAL

ENFILE

For a proper error handling you should always include
the header file errno.h in your program:

#include <errno.h>

This file contains the declarations of two integer vari-
ables errno and 0Serrno. On an unsuccessful function
call errno contains an error number of the C runtime
system which describes the error situation, whereas in
OSerrno the SINTRAN error code is made available (see
SINTRAN III Reference Manual). In general, OSerrno gives
a more detailed description of the error. If no corres-
ponding SINTRAN error code exists, OSerrno is set to
zero.

Note
After a successful call errno is not cleared. So,
error numbers should only be tested after an error
has been indicated by the return value of the
function called.

Below you will find a list of all errno values used in
this implementation together with their macro names, as
defined in errno.h, and their meaning. (In order to be
compatible to UNIX, the header file also defines some
error constants which are not used under SINTRAN.)

No such file, user, directory

Error in 1/0 operation

Hardware error in I/0 operation

Parameter list too long

Wrong file number

Access permission denied

Illegal address in system call

File or directory in use

File already exists

Invalid parameter

SINTRAN file buffer overflow

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-8

24
28
33

34

60

61

EMFILE

ENOSPC

EDOM

ERANGE

ETIMEDOUT

ECONNREFUSED

C Library Functions

Attempt to open too many files

No more space available

Illegal parameter to mathematical function
Illegal result of mathematical function:

The result cannot be represented within machine
precision, e.g. overflow.

Timeout while accessing a remote system

No connection to remote system

FUNCTION

HEADER FILE

DECLARATION

DESCRIPTION

sys_nert

sys_errlist

print error message: perror

#include <errno.h>

e void perror (s);
char *s;

perror produces a message on the standard error output
device (which is the terminal in most cases), describing
the last error encountered during a function call.

The user specified string s is displayed first, fol-
lowed by a colon, a blank, and then the errnoc message
and a carriage return. Most usefully, the string para-
meter is the name of the program part in which the error
occurred.

If OSerrno is unequal zero, the errno message will be
followed by a slash and the SINTRAN error number.

To enable you to access the standard error messages the
following two variables are declared in the header file
errno.h:

int sys_nerr;

char *sys_errlist[];

sys_errlist is an array containing the error messages.

The error variable errno can be used as subscript.
sys_nerr is the number of entries in the table.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions 13-9

example #include <(stdio.h>

main()
{
FILE *fp:

fp = fopen ("the-door", "r"):. /® This file ./
/® does not exist */
if (fp == NULL) {
perror ("Program TEST-PERROR");
clearerr(fp):

}
}

The following error message will be displayed:

Program TEST-PERROR: No such file, user or directory
SINTRAN error = 46

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-10

== Basic Functions

— Basic I/0

C Library Functions

The functions described in this section are alsc used
internally by the functions of the formatted I/0 package
(see page 13-39). In order to avoid problems, you

should not intermix functions of these two sections. The
chart in appendix C on page 17-81 shows the relation-
ship between basic and formatted 1/0.

As the system buffers the data it is possible that you
get a delayed error message after an error occured, i.e.
although a call to write is erroneous you can get the
error message later with a call to fsync or close.

FUNCTION

HEADER FILE

DECLARATION

DESCRIPTION

fname

mode

open a file: open

#include <fcntl.h>

e int open (fname, flags, mode);
char *fname;
int flags, mode;

The function open connects the physical file fname to
your program with the access rights specified in flags.
On a successful call it returns a positive file number,
which identifies a file descriptor containing the cur-
rent file position. Initially the file position is set
to zero; it is updated by read, write and lseek (see
pages 13-14, 13-16 and 13-21). The file number re-
turned by open will be used as a reference when acces-
sing or manipulating the file. Under SINTRAN for each
program a table of allocated file numbers is maintained.
The size of this table can be determined by calling the
function getdtablesize (see page 13-19).

A file name written in UNIX notation is automatically
transformed into a SINTRAN file name. If the file name
is an empty string (""), you are expected to specify a
SINTRAN device number as third parameter.

The parameter mode specifies the access rights with
which a file is to be created.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions 13-11

mode == If the mode equals zero and if a creation mask is de-
fined by the function umask (see page 13-20), this mask
is used to set the access rights. Otherwise, if the mode
equals zero and no creation mask is defined, the user's
SINTRAN defaults for creation are taken. You can list
your defaults with the SINTRAN command USER-STATISTICS.

mode '= 0O; If mode is unequal zero, it is used as creation mode
mask. In the header file stat.h integer macros for
mode are defined. If you include this header file, you
can use them to specify individual access rights for a
file. The following values are defined:

S_IREAD own read access
S_IWRITE own write access
S_GREAD friend read access

S_GWRITE friend write access
S_PREAD public read access
S_PWRITE public write access

You can combine them by using the bitwise OR operator,
e.g. S_READ | S_IWRITE | S_GREAD.

flags The parameter flags specifies the access rights with
which a file is to be opened. For this purpose the
following macros are defined:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY Immediate return, if a file is blocked

O_APPEND Each write appends at the end of the file.

O_CREAT If the file does not exist, it will be
created and opened. The file name must not
be abbreviated. The default file type is
:SYMB.

O_TRUNC If the file exists, its length is truncated
to O; a write operation immediately follow-
ing open will start at file offset O.

O_EXCL Only exclusive access is allowed. An error
occurs, if you try to create an already
existing file.

O_S3NABBR SINTRAN extension: When opening an existing
file an exact match of user-specified and
SINTRAN file name is required.

O_S3CHAR SINTRAN extension: Except terminals all files
are considered to contain binary data by
default. On read operations this flag causes
a file to be considered as a stream of
characters and the parity bit is removed.

0_S3COM SINTRAN extension: If the file had been
created with the Monitor call "CreateFile" as
a contiguous file (in standard C there is no
possibility to set the number of pages for
the file to be created) it will be opened for
common access, otherwise the flag will be

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-12

RETURN VALUE

C Library Functions

ignored. If the file does not exist and
O_CREAT is set, the setting of O_S3COM does
neither cause the file to be created as
contiguous file nor will it be opened for
common access.

O_S3SEG SINTRAN extension: If possible, the file will
be connected to a segment, which enables a
faster random access. (Segments are described
in the ND-500 Loader/Monitor manual.)

You will find an example of open on page 13-37.

Again, these flags may be combined by using the bitwise
OR operator, e.g. O_WRONLY | O_CREAT.

If the call was successful, the SINTRAN file number will
be returned. On error the value -1 will be returned and
the error variable errno is set to one of the following
values:

ENOENT O_CREAT is not set and the file does not
exist.

EACCES Access to the file denied because of mis-
sing access rights.,

EMFILE No more file numbers available.

ENXIO The file is linked to a device without
hardware access.

EFAULT The pointer to fname is outside the
address space.

EEXIST O_EXCL and O_CREAT was specified, but the

file exists.

NOTES A program may at most have 64 files opened simultaneous-
ly.

FUNCTION get segment number: segment number

DECLARATION int segment_number(fd);
int fd;

DESCRIPTION The routine segment_number returns the segment number of

the file, which is opened as segment and associated with
the file number fd. If fd refers to a file not opened as
segment -1 is returned. If fd is not associated with an
open file at all errno is set to EBADF.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

13-13

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

create a file: creat

e int creat (fname, mode);
char *fname;
int mode;

creat creates a new file or prepares to rewrite an
existing file called fname. It is implemented as a
call to open with the following parameters:

open (fname, O_RDWR|O_CREAT|0_TRUNC|0_S3CHAR, mode)

The return values and the setting of errno are the same
as for open.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-14

C Library Functions

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

read from a file: read

e int read (fn, buf, nbyte);
int fn;
char *buf;
unsigned nbyte;

The function read reads nbyte bytes from the file
associated with fn into the buffer pointed to by buf.
The file number fn is obtained from a previous open or
ereat call. After each read the position of the
internal file pointer is incremented by the number of
bytes read.

When reading from the terminal, the following has to be
considered:

The input will be line buffered which means that for
each line of input read must be called.

When not reading characterwise (nbyte > 1) the following
characters are control characters:

CTRL+@ end of input (will not be written to buf)
<{newline> end of input (only the carriage return
= OXOD will be written to buf)

CTRL+A remove previous character from input line
CTRL+K clear current input line
CTRL+R rewrite the line as it looks now

(does not affect buf)

When reading characterwise from the terminal
(nbyte == 1) the characters mentioned above do not
control the input. There has to be a programmed
end-of-input condition. See example on page 13-34.

After successful execution, the number of bytes actually
read and placed in the buffer i1s returned. The number of
bytes returned is less than specified, if the end of
file was encountered, or if the input from a line-orien-
ted device (e.g. a terminal) is terminated by a carriage
return. The return value 0 indicates that the end of the
file is reached, or that nbytes was less than or equal
to zero.

On error -1 is returned and errno is set to one of
the following values:

EBADF fn is not associated with an open file.

EACCES fn is not associated with a file opened
for reading.

EFAULT buf points to an invalid address.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions 13-15

NOTES Under SINTRAN most character files contain parity bits.
If you want the parity bits to be removed, the file must
have been opened with the O_S3CHAR flag specified.

You will find an example of read on page 13-34.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-16

C Library Functions

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

write to a file: write

e int write (fn, buf, nbyte);
int fn;
char *buf;
unsigned nbyte;

The function write writes nbyte bytes from the buffer
pointed to by buf to the file associated with fn. After
each write the position of the internal file pointer is
incremented by the number of bytes written. If the file
was opened with O_APPEND, the file pointer is set to the
end of the file before the first write access.

If you have filled a buffer with input from a terminal
all characters after the carriage return (0XOD) are
truncated. So if you send the buffer to the terminal you
have to add a desired line-feed character (0X0A).

After successful execution the number of bytes actually
written is returned. Otherwise, -1 is returned and
errno is set to one of the following values:

EBADF fn is not associated with an open file

EACCES fn is not associated with a file opened
for writing.

EFAULT buf points to an invalid address.

EIO hardware error

You will find an example of write on page 13-34.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

13-17

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

NOTES

flush buffers of the basic I/0 system: sync, fsync

e int sync();

e int fsync (fn);
int fn;

fsync writes the buffered data of the file associated
with fn to its permanent storage device, while sync
flushes all buffered data of the basic I/0 system.

Both, fsync and sync set the SINTRAN file pointer to the
end of the file.

The return value O indicates a successful call. On error
-1 is returned and errno is set to one of the following
values:

EBADF fn does not refer to an open file.

EIO error in I/0 operation

fsync and sync only flush buffers of the basic I/0
system. To flush buffers of the formatted I/0 system you
have to use the function fflush (see page 13-46).

You will find an example of fsync on page 13-34

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-18

C Library Functions

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

close a file: close

e int close (fn);
int fn;

close closes the file associated with the file number
fn. This function is called automatically when ter-
minating the program.

After successful execution O is returned. Otherwise, -1
is returned and errno is set to EBADF, indicating that
fn is not associated with an open file.

You will find an example of close on page 13-34,

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

delete a file: unlink

® int unlink (fname);
char *fname;

unlink deletes the file specified in frname. The file
name may be abbreviated. unlink may only be applied to
closed files.

After successful execution 0 is returned. Otherwise, -1
is returned and errno is set to one of the following
values to indicate the error:

ENCENT The file specified does not exist, or there
are more than one file names with the given
abbreviation, or wrong syntax of file name.

EACCES You do not have the access right to delete the
file.

EBUSY The file is still open.

EFAULT Illegal address in system call, e.g. fname
equals zero.

You will find an example of unlink on page 13-34.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

13-19

FUNCTION get file number table size: getdtablesize

DECLARATION e int getdtablesize ();

DESCRIPTION The file number table contains an entry for each file
opened by open. These entries are numbered with
integers, starting at O and incrementing by 1 for each
new entry. The maximum size of this table can be
obtained by calling getdtablesize.

RETURN VALUE getdtablesize returns the maximum size of the file
number table.

FUNCTION duplicate file number: dup, dupZ

DECLARATION e int dup (old_fn);

int old_fn;
e int dup2 (old_fn, new_fn);
int old_fn, new_fn;

DESCRIPTION

dup The function dup returns a new file number which
refers to the same file descriptor as the file number
given as parameter.

dup?2 The function dup2 works like dup the only difference

RETURN VALUE

being that the new file number new_fn is supplied by the
user. The value of new_fn must be in the range of
0..getdtablesize-1 (see page 13-19). If new_fn is an
already active file number, the file currently referred
to is closed before. A typical application of dupl is
redirection of standard input and output.

The return value -1 indicates an error and errno is set
to one of the following values:

EBADF old_fn or new_fn is not a valid file number.
EMFILE There are no more file numbers available.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-20

C Library Functions

FUNCTION set file creation mode mask: wmask
DECLARATION e int umask (mode);
int mode;

DESCRIPTION The function wmask sets the default access rights for
files that have to be created. The mode can be defined
like the mode parameter in open, using the flags defined
in the header file stat.h (see page 13-11).

RETURN VALUE As result the previous creation mask is returned.

You will find an example of wmask on page 13-33.

FUNCTION change mode of file: chmod

DECLARATION e int chmod (fname, mode);

char *fname;
int mode;
DESCRIPTION chmod changes the access rights of the file fname

RETURN VALUE

according to the mask defined by mode. The mask can be
defined by using the flags of the header file stat.h
(see also page 13-11). When calling chmod the file
must not be open.

After successful execution 0 is returned. Otherwise, -1
is returned and errno is set to indicate the error.

You will find an example of chmod on page 13-38.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

13-21

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

determine accessibility of a file: access

e int access(fname, mode);
char *fname;
int mode;

The function access determines whether the file spe-
cified by fname exists and whether it can be accessed
at least for reading. The parameter mode is ignored.

If the file exists and can be accessed, 0 is returned.
Otherwise, -1 will be returned and errno is set to
indicate the error.

FUNCTION

DECLARATION

DESCRIPTION

RETURN VALUE

reposition a file pointer: lseek

e long lseek (fn, offset, position);
int fn;
long offset;
int position;

lseek sets the file pointer of the file associated with
In offset bytes from the beginning (position), from the
current position (position=1) or from the end of the
file (position=2). For offset negative values may be
specified as well as positive ones.

After successful execution the new file position
(measured in bytes from the beginning) is returned.
Otherwise, -1 is returned and errno is set to one of
the following values:

EBADF fn is not associated with an open file.
EINVAL The position specified was no valid
value (0, 1 or 2), or the new file pointer
position would be negative.

You will find an example of Ilseek on page 13-34.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-22 C Library Functions
FUNCTION truncate a file: truncate, ftruncate
DECLARATION e int truncate (fname, length);
char *fname;
int length;
e int ftruncate (fn, length);
int fn, length;
DESCRIPTION
truncate truncate sets the size of the file fname to length
bytes. If the file previously was larger, the extra data
gets lost. Note, that the file must not be open!
ftruncate ftruncate performs the same as truncate but on an open
file. Instead of the file name, the file number retrie-
ved from a previous open call is specified.
RETURN VALUE After successful execution 0 is returned. Otherwise, -1

is returned and errno is set to indicate the error.

You will find an example of truncate on page 13-37.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

C Library Functions

13-23

FUNCTION

HEADER FILE

DECLARATION

DESCRIPTION

struct stat {

short

unsigned long
unsigned short
unsigned short
short

short

short

short

int

long

int

long

int

long

int

long

long

long

get file status: stat, lstat, fstat

#include <types.h>
#include <stat.h>

int stat (fname, buf);
char *fname;
e struct stat *buf;

® int lstat (fname, buf);
char *fname;
struct stat *buf;

e int fstat (fn, buf);
int fn;
struct stat *buf;

All three functions fill the structure stat pointed to
by buf. This structure contains information about the
specified file and is declared in the header file stat.h

as:

st_dev; /* directory index the file resides on */
st_ino; /* object index */
st_mode; /® access protection bits */
st_s3mode; /* SINTRAN access protection bits */
st_nlink; /* under SINTRAN always 1 */
st_uid; /* user index */
st_gid; /* user index */
st_rdev; /* is unequal zero if peripheral device */
st_size; /* number of bytes in file */
st_atime; /* time of last read access in seconds */
st_sparel;

st_mtime; /* time of last write access in seconds */
st_sparez2;

st_ctime; /* time of creation in seconds */
st_spare3;

st_blksize; /* optimal block size for file I/0 (2048) */
st_blocks; /* number of blocks allocated */

st_spared[2];

The time values returned in the structure can be decoded
through the time function ctime, localtime or gmtime
(see page 13-37).

Sinée there are no symbolic links in the SINTRAN file
system, the functions stat and lstat are identical.

Norsk Data ND-860251.2 EN

Scanned by Jonny Oddene for Sintran Data © 2011

13-24

C Library Functions

The function fstat delivers the same result as stat and
lstat, but instead of a file name it requires a file
number fn from a previous call to open as first para-
meter.

RETURN VALUE After successful execution 0 is returned. Otherwise, -1
is returned and errno is set to indicate the error.
NOTES These functions are implemented as close to the corres-
ponding UNIX functions as possible.
FUNCTION set file times: utimes
HEADER FILE #include <time.h>
DECLARATION e int