ND-500 SIMULA
Reference Manual

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA
Reference Manual

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk Data
A.S.

Copyright €)1985 by Norsk Data A.S.

Scanned by Jonny Oddene for Sintran Data © 2010

PRINTING RECORD

Printing Notes

06/85 VERSION 01

ND-500 SIMULA Reference Manual
Publ.No. ND-60.208.1 EN

o < 009
9%, 33 333832
38583393 833 333 Norsk Data A.S
338 S8 o Graphic Canter
P.0.Box 25, Bogerud
NorSk Data 0621 Oslo 6, Norway

Scanned by.Jonny Oddene for Sintran Data © 2010

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complets new manual which replaces the old manual. New versions
incorparate all revisions since tha pravious varsion. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announcsd in the Customer Support Information
{CS!} and can be ordered as described below.

The reader’s comments form at the back of this manual can be used both to
report aerrors in the manual and to give an evaluation of the manual. Both
detailed and general comments are weicome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or (in Norway}
to:

Graphic Center
Norsk Data A.S
P.Q. Box 25, Bogerud
0621 Osio 6, Norway

Preface:

THE PROOUCT

SIMULA 67 1is an object-oriented high-level language for programming
digital computers. It is especially suited for solving large and
complex problems. This manual describes the language, and the
facilities of the following compiler:

ND-500 SIMULA 67 ND 10354, Version A

THE READER

The reader should be engaged in writing SIMULA programs for ND-500
machines.

PREREQUISITE KNOWLEDGE

The reader must at minimum have a basic knowledge of data processing
techniques and have some experience in programming some high level
language. Some prior familiarity with SIMULA programming is also
recommended.

HOW TO USE THE MANUAL

This manual provides a complete formal description of the features and
facilities of ND-500 SIMULA. It is intended for reference purposes and
is organized in a progressive fashion, 1.e. the simpler structural
components are explained first. It is not, however, explicitly
designed for tutorial uSe. Thus a general SIMULA textbook which is
organized tutorially is recommended to accompany this manual for
beginning SIMULA programmers. It should also be noted that this
version of the manual is a preliminary one, with some sections
concerning more advanced features of the language yet to be written.

RELATED MANUALS

In order to extend the description of the SINTRAN environment in which
the SIMULA programs operate, the following manuals are recommended:

ND Relocating Loader - ND-60.066
SINTRAN III Reference Manual - ND-60.128
ND-500 Loader/Monitor - ND-60.182

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

Scanned by Jonny Oddene for Sintran Data © 2010

vii

Section Page
1 INTROOUCTION . 1
1.1 The Notation 3
1.2 SIMULA Character Set . 4
1.3 SIMULA Terms and Concepts 5
1.3.1 Keywords 5
1.3.2 Special Symbols [
1.3.3 Identifiers . 7
1.3.4 Literals and Constants . 7
1.3.4.1 Integer Literals . . 7
1.3.4.2 Real and Long Real therals 8
1.3.4.3 Strings (Text Literals) 9
1.3.4.4 Character Constants 10
1.3.5 Token Separators . 10
1.4 Directive Lines . 10
1.4.1 Include a Source Fxle . 11
1.4.2 Change Listing Page Header . T
1.4.3 Change to New Page in Listing . 11
1.4.4 Turn Compilation Listing On or Off . . 11
1.4.5 Change Significant Line Length of Source Fxle 12
1.5 Comment Conventions 12
1.6 Program Exchange Consxderatlons 12
1.7 Statements and Declarations . 13
1.8 The Line Structure of Source Hodules . 13
2 THE S-PORT SIMULA SYSTEM . 15
2.1 The Compiler . . . 17
2.1.1 The Front End Conpxler (FEC) 17
2.1.2 The S-Compiler . 17
2.2 The Run Time System 18
3 DECLARATIONS . 19
3.1 Data Types . . 21
3.2 Arithmetic Types . 21
3.2.1 Short Integer 22
3.2.2 Long Real . 22
3.3 The Type Boolean . 22

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

viit

WWwwwiwwww WLWwWWUWwWwWWwiwwWwWwwww ww WwWwww
—
w

Section Page
4 The Type Character . 22
5 Reference Types . 22
5.1 Object Reference . 22
.5.2 The Type Text 23
[Type Qualification . 24
7 Subordinate Types 24
8 Type Transfer 25
9 Declarations . . . 25
.10 Simple Variable Declaratxons . 26
.10.1 Value Type Variables . 26
.11 Array Declaration 27
.12 Switch Declaration . 28

Procedure Declaration . . 29

1301 Values of Function Desanatots . 30
.13.2 Parameter Specification 31
.13.3 Parameter Transmission Modes . 31
.14 Class Declaration 32
14.1 Subclasses . . 34

14.2 Virtual Quantltxes . 38

14.3 Attribute Protection . . 39

14.4 Parameter Transmission Modes . 40

14.5 Remote Accessing . . 41

14.6 Standard Procedure Attrlbute 'Detach' 42

.15 Scope of Declared Identifiers 42
.16 Initialization . 42
.17 Constant Declaratxons 43

4 EXPRESSIONS 45
A Variables . 47
1.1 Simple Varzables . 48
1.2 Text Variables . . . 49
1.3 Subscripted Variables . 49
1.4 Remote Identifiers (Dot Notatxon) S0
2 Function Designators . .. 51
3 Boolean Expressions 52
3.1 Relations . 53
3.1.1 Arithmetic Relatxons . 53
3.1.2 Character Relations 53
3.1.3 Text Value Relations . 54
3.1.4 Object Relations . . 54
3.1.5 Object Reference Relatxons . 55
3.1.6 Text Reference Relations . 55
3.2 The Logical Operators 56
3.3 Precedence of Operators 56
q Arithmetic Expressions . 57
4.1 Operators and Types . 59
4.2 Type of a Conditional Expressxon . 60
4.3 Operator Precedence . 61
4.4 Arithmetics of Real Quantxtxes 61

e B o ke e e S e e e D Bk B B B B

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

Section Page
4.5 Character Expressions 61
4.6 Text Expressions . 62
4.7 Object Expressions . 63
4.7.1 Qualification 63
4.7.2 Object Generator . 64
4.7.3 Local Objects . 64
4.7.4 Instantaneous Qualexcatlon 64
4.8 Designational Expressions 65
5 STATEMENTS . 67
5.1 Assignment Statements 69
5.1.1 Arithmetic Assignment 71
5.1.2 Text Value-Assignment 72
5.1.3 Text Reference Assignment 73
5.1.4 Object Reference Assignment 13
5.2 Conditional Statements . 74
5.3 While Statement 75
5.4 For Statements . . 76
5.4.1 For DList Elements . 77
5.4.2 The Controlled Varlable 78
5.4.3 The Controlled Statement . 78
5.5 Goto Statements 78
5.6 Procedure Statement .. . 79
5.6.1 Actual-Formal Correspondence - 79
5.6.2 Value Assignment (Call by Value) . 80
5.6.3 Default Replacement (Call by Reference) 80
5.6.4 Name Replacement (Call by Name) . 81
5.6.5 Body Replacement and Execution . 82
5.6.6 Restrictions . . 82
5.7 Object Generator Statement . 83
5.7.1 Parameter Replacement 83
5.8 Connection Statement . 84
5.9 Compound Statement . 85
5.10 Blocks . . . 86
5.10.1 Prefixed- Blocks 817
5.11% Dummy-Statements . 88
6 INPUT/QUTPUT STATEMENTS 89
6.1 The Class °File" 92
6.2 Imagefiles . Lo 97
6.2.1 The Class "Imagefile” 97
6.2.2 The Class “Infile" 98
6.2.3 The Class "Outfile® 101
6.2.4 The Class °*Directfile" 104
6.2.5 The Class "Printfile® 108

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

Section Page
6.3 Bytefiles 111
6.3.1 The Class "Bytefile" 11
6.3.2 The Class "Inbytefile" 111
6.3.3 The Class "Outbytefile® .o . 113
6.4 File Naming in the SINTRAN Env1ronnent . 114
6.5 File Opening . e e e e e 114
7 TEXT HANDLING 117
7.1 Text Attributes e e e e e e 119
7.2 *Constant”, "Start", "Length®" and “Main* 119
7.3 Character Access . 120
7.4 Text Generation 122
7.5 Subtexts . . 122
7.6 Numeric Text Values 123
7.7 Editing Procedures . 124
7.8 “De-editing” Procedures 126
8 SEPARATE COMPILATION . 129
8.1 Introduction to Separate Compilation . 131
8.1.1 The Attribute File . 132
8.1.2 Compatible Recompilation . 133
8.2 External Declarations . . 135
8.3 External Procedure Declatatxon . 135
8.4 External Class Declaration . 136
8.5 Module Identification 136
9 SEQUENCING . 137
9.1 Block Instances and States of Execution 139
9.2 Quasi-Parallel Systems . . 140
9.2.1 Semi-Symmetric Sequencing: Detach - Call . 141
9.2.2 Symmetric Component Sequencing: Detach - Resume 141
9.2.3 Dynamic Enclosure and the Operating Chain 142
9.3 Quasi-Parallel Sequencing 146
9.3.1 The Detach Statement . 146
9.3.2 The Call Statement . 147
9.3.3 The Resume Statement . 148
9.3.4 Object “"End* 148
9.3.5 Goto Statements 149
10 THE STANDARD ENVIRONMENT . 151

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

X

Section Page
10.1 Basic Operations 154
10.2 Text Utilities . . . S |- 1)
10.3 Mathematical Functxons P LY
10.4 Extremum Functions 158
10.5 Environmental Enquiries, 158
10.6 Exrror Control 160
10.7 Array Quantities 160
10.8 Random Drawing . . B 1
10.8.1 Pseudo-Random Nulber Streams O -3
10.8. Randoa Drawing Procedures 182
10.8.3 Supplementary Procedures 164
10.9 Calendar and Timing Utilities 165
10.10 Miscellaneous Utilities 165
10.11 System Classes for List Handanq (Slnset) and stcrete

Event Modelling (Simulation) 1686
1 THE CLASS SIMSET 187
1.1 General Structure 188
11.2 Class "Linkage® . 189
11.3 Class "Link" 10
11.4 Class “Head"00 1M
12 THE CLASS SIMULATION 173
12.1 General Structure 175
12.2 Class "Process” v v e e i i oo ... 178
12.3 Activation Statement 1M
12.4 Sequencing Procedures . . . S A
12.5 The Main (Simulation) Proqran S § - ¥4
12.6 The Procedure "Accum” « « 182
13 COMPILING A SIMULA PROGRAM 18
13.1 The Help Function . . . e £ - 1}
13.2 Compilation of Source Hodules O £ - -
13.2.1 Physical Limitations . . . O 1 1
13.2.2 Diagnostics from the Conpxler .. e £ Y
13.2.3 Deviations from the SIMULA Standaxd e e e e 188
13.3 Library Specification Command 189
13.4 The LISTING Command - . « . « . « « . . . 189
13.5 Create SIMULA Init File 19

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

xii

Section Page
13.6 Display Current Parameter Values 190
13.7 Change Parameters and Switches 191
13.7.1 User Parameter Change . . . B 2
13.7.2 Debugging and Testing Paraneters T £
13.8 Separate Activation of the S-Compiler 193
13.9 Special Maintenance Directives 194
13.9.1 S-Compiler Directives 194
13.9.2 FEC Directives« . .« « o 194
14 LINK-LOADING OF SIMULA PROGRAMS 197
14 .1 Single Segment Load 199
14.2 Several Segment Load . . . e -
14.2.1 Preparing a Library Segnent R 1
14.2.2 Using a Prepared Library Segment 200
15 RUNNING A SIMULA PROGRAM a;m
15.1 Activating the Program 203
15.2 Simple Program Compile-Load- and Go in Batch PR 1 0 k]
15.3 Precompiled Programs with Load-and-Go 204

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 1

INTRODUCTION

ND-60.208.1 EN

__ Scannedby JonnyOddeneforSintranData©20410

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 3
INTRODUCTION

1 INTROOUCTION

The SIMULA language described in this manual conforms to the SIMULA
Standards Group's SIMULA 67, which is proposed as an International
Standard. The full language is therefore implemented.

The ND-500 SIMULA implementation is based upon the portable SIMULA
system, and is therefore highly compatible with other implementations
based upon this systea.

SIMULA is a registered trade mark of Simula A.S., Oslo, Norway.

1.1 THE NOTATION

The notation used to specify the syntax of the SIMULA language is
based on the Backus-Naur Form. The meanings of the various constructs
described in this formalism are given in prose and, in some cases, by
equivalent program fragments. In such program fragments some
identifiers are . printed in upper case; the use of upper case letters
signifies that the identifier in question represents some quantity
which is inaccessible to a normal program.

Examples are given to illustrate the constructs; both in such examples
and in the text the key-words of the language are underlined in order
to emphasize their use,

The syntactic specification of the language 1is given as a set of
rules, each defining a specific language construct. The general format
of such a rule is

left-side
= first-alternative
! second-alternative
! . etc.

Other rules will then define the format of “"first-alternative®,
*second-alternative®, etc. Whenever a termjnal symbol occurs, it will
be quoted in string quotes ("); symbols which are not quoted are

Metasvmbol = Meaning

= is

! or

{(x}) 0 or 1 instance of x

(* x *) 0 or more instances of x
(x'!'y) grouping: either x or y
"xyz" the terminal symbol xyz
meta-identifier a non-terminal symbol

A meta-identifier 1is a sequence of letters, digits and hyphens
beginning with a letter.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

4 ND-500 SIMULA REFERENCE MANUAL
INTRODUCTION

A sequence of terminal and non-terminal symbols in a language rule
implies the concatenation of the text that they ultimately represent.
Within this chapter the concatenation is direct, i.e. no characters
intervene. In all other parts of this standard the concatenation is in
accordance with the rules set out on page 34 et seq.

The characters required to form SIMULA programs shall be those
implicitly required to form the tokens and separators defined below.

In order to illustrate the use of the syntactic formalism, language

rules given in this chapter will be given both in the formal manner
and in prose.

1.2 SIMULA CHARACTER SET

The SIMULA character set consists of twenty-six letters, ten digits,
nineteen special characters, and some layout characters.

letter
= lal ! lbu ! lcl ! ldl ! Iel ! lfl ! Igl ! Ihl ! Iil ! !jl ! Ikl
! lll ! lml ! lnl ! Iol ! lpl ! lql ! Irl ! lsl ! -tl ! Iul ! IVI
R R I

This rule means that a letter is the letter "a®, or "b*, etc, i.e. it
is simply one of the twenty-six characters of the English alphabet.
Outside strings and character constants SIMULA does not distinguish
between upper and lower case letters.
digit
= lol ! l1l ! l2l ! l3l ! l4l ! ISI ! I6l ! l7l ! .8- ! -9-

This rule means that a digit is one of the ten decimal digits.

Special characters include the following nineteen characters:

VP& /()= + ', <K%

Note also the reserved use of % as the first character of directives
to the commpiler or of comment lines.

The layout characters are (IS0 codé value in parentheses)
blank (32) HT (9) CR (13) LF (10)

The collating sequence used is the ISO sequence. In addition, any
printable character may occur within strings or character literals.

Note that the ISO and the ASCII coding are almost the same, apart from
the interpretation of control characters, and from the so-called

‘national use positions® of the ISO code. Thus e.g. square brackets or
backslash are not part of the SIMULA (ISO) standard character set.

ND-60.208.1 EN

raYatalVi Oddene for Sintran Data © 2010

®
D
q

9
[

ND-500 SIMULA REFERENCE MANUAL 5
INTRODUCTION

1.3 SIMULA TERMS AND CONCEPTS

The basic language elements of SIMULA, i.e. lexical tokens, are
keywords, special symbols, identifiers and literais. These are all
formed from the character set defined previously in this chapter. No
layout character may occur within the tokens, except as explicitly
noted in this chapter, since layout characters act as delimiters.

The source text is written as a sequence of lines. In contrast to e.q.
FORTRAN the line structure does not necessarily follow the structure
of the language concepts, with one important exception. Any line which
EBERERTiA } 1e69'4BRelod®id cftEeGRiYEer ine. Divective lines are

1.3.1 KEYWOROS

A keyword is a word that is recognised by the compiler. To emphasize
their status as such, keywords are underlined throughout this manual.
The SIMULA keywords are

ACTIVATE LABEL
AFTER LE

AND LONG
ARRAY LT

AT NAME
BEFORE NE

BEGIN NEW
BOOLEAN NONE
CHARACTER NOT

CLASS NOTEXT
COMMENT OR

DELAY OTHERWISE
Do PRICR
ELSE PROCEDURE
END PROTECTED
EQ QUA

EQV REACTIVATE
EXTERNAL REAL
FALSE REF

FOR SHORT

GE STEP

GO SWITCH
GOTO TEXT

GT THEN
HIDDEN THIS

IF TO

IMP TRUE

IN UNTIL
INNER VALUE
INSPECT VIRTUAL
INTEGER WHEN

IS WHILE

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL
INTRODUCTION

1.3.2 SPECIAL SYMBOLS

The special symbols are formed from the special characters previously
described. They are

Special symbol Meaning

Notes:

1)

2)

3}

plus

minus

multiplied by

to the power of

divided by (REAL division)

divided by (INTEGER division with truncation)
times ten to the power of (REAL literals)
times ten to the power of (LONG REAL literals)
becomes

denotes

is less than

is less than or equal to

is equal to

is greater than or equal

is greater than

is different from

reference the same as

do not reference the same as

start of comment / ISO code quote
character quote

text quote

semicolon (1)

colon (2)

open parenthesis (3)

close parenthesis (3)

. dot (attribute access)

, comma (3)

e = e
~ »

ThER

n [}

~ 0 v

N

E = Il AVl oAA

~— o~ e

The semicolon is used for terminating statements,
declarations, specifications, and coaments.

The colon may be used for label definitions, and in array
declarations.

Parentheses are used to group together parameters of a
procedure, function, or class, or the indices of a
subscripted variable. The comma is used for separating the
different parameters or indices. Parentheses are also used to
rearrange the order in which expressions are evaluated.

Use of the above representations for special symbols is recommended.
In order to provide complete compatability with other implementations
some of the special symbols in addition have a keyword representation

as shown in the table below.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL : 7
INTRODUCTION

Reconmended Alternative representation

LT
LE
EQ
GE
GT
NE
COMMENT (not as ISO code quote)

—AV VNI o AA
A [}

1.3.3 IDENTIFIERS

identifier
= letter (* letter ! digit ! "_" *)

This rule means that an jdentifjer is a sequence of letters, digits,

and underscores, the first of which must be a letter. It can be wused

to identify a program quantity such as

a variable

an array

a function or procedure

a class

an attribute of a class

the kind of an external procedure
a constant

The scope of an identifier is determined by the occurrence of its
declaration, as explained elsewhere in this manual (see pages 29 and
42).

The maximum length of an identifier is 72 characters. The keywords
defined above cannot be used as identifiers. Note that all the

constituent characters are significant, so that A and A_ identify
different quantities.

1.3.4 LITERALS AND CONSTANTS

A constant is either a literal, or it is an identifier defined to be
constant. It does not change its value during execution. For the

definition of identifier constants, see page 43.

1.3.4.1 INTLER LITERALS _ .
. _g.'.'f .) . : y
unsaned}t@;er §ﬁf’ .

= digit (* digit *)

LORAS
B
o
%
oY

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

KA

8 ND-500 SIMULA REFERENCE MANUAL
INTRODUCTION

An integer literal consists of a string of digits. The values must be
between O and 2147483647 inclusive.

An integer data item is always an exact representation of an integer
value.

1.3.4.2 REAL AND LONG REAL LITERALS

unsigned-number
= decimal-number [(exponent-part)
! sxponent-part

An unsigned-number is a decimal-number, a decimal-number followed by
an exponent-part, or just an exponent-part.

decimal-number
= unsigned-integer [decimal-fraction)
! decimal-fraction

A decimal-number is an unsigned-integer (i.e. an integer literal)
optionally followed by a decimal-fraction, or it is just a decimal-
fraction.

decimal-fraction
= ".* unsigned-integer

A decimal-fraction 1s an integer literal preceded by the decimal
point.

exponent-part
= ("&" ! "&&") { "+t "-*) unsigned-integer

An exponent part is either the real exponent symbol (&)} or the long
real exponent symbol (&%), optionally followed by the sign of the
exponent, and followed by the integer literal giving the size of the
exponent. This is a scale factor expressed as an integral power of 10.
The exponent mark used determines the type of the literal defined by
the unsigned-number:

1) Unsigned-integers are of type integer.

2) If the unsigned-number contains an exponent-part with a
double ampersand (°&&") it is of type long real.

3) All other unsigned-numbers are of type real.

Examples:
20 - integer value
2&1 2.0&+1 . 2&2 20.0 200&-1 - represent same real value

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 9
INTRODUCTION

2.3456788&4&0 - long real value
2345. - 1s illegal
(in contrast to FORTRAN)

The value of a freal literal must be zero or lie between 10**-7¢ and
10**76 (32 bits representation).

A real data item is in most cases an approximation to the exact value
of an expression; the accuracy is approximately 7 decimal digits.

The value of a long real literal must be zero or lie between 10%**-76¢
and 10**76 (64 bits representation). Thus the value range is the same
as that of real literals, but the accuracy of the approximation is
greater, being approximately 16 decimal digits.

Examples:

2&1 2.0&+1 . 2&2 20.0 200&-1 - represent same real value
2.345678&&0 - long real value

1.3.4.3 STRINGS (TEXT LITERALS)

string
= simple-string (* token-separator simple-string *)

A string 1is any number of ‘simple-strings, separated by token-
separators (and nothing else), e.g. separated by spaces, end-of-lines,
or direct-comments.

simple-string
= *"* (* 150-code ! non-quote ! text-quote *) "*°

The rule means that a simple-string is a sequence of ISO-coded
characters (see below), non-quotes or text-quotes, bracketed in ". The
length of the simple string may be zero (the empty string); a simple
string must be wholly contained in one line.

1S0-code
= *!" unsigned-integer "!'*"

non-quote
= any-printing-character-except-string-quote

text-quote
= two-string-quotes-in-sequence

Any printing character (including space) except the string quote (")
represents itself within a string (or a character literal, see below).

In order to include the complete ISO alphabet any character may be
represented within a string (or a character-constant, see below) by
its ISO-code surrounded by code quotes (! - exclamation wmark). The
unsigned-integer given as the code cannot consist of more than three

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

10 ND-500 SIMULA REFERENCE MANUAL
INTRODUCTION

digits and must be less than 256. If these conditions are not
satisfied, the construction is interpreted as a character-sequence.

The string quote may, however, also be represented in simple-strings
by two consecutive quotes (*").

Examples:
The string: represents:
"Ab®!direct-comment; “cde" Abcde
“AB" (end-of-line> "CDE" ABCDE
®121ABCDE!3!" ABCDE enclosed in STX and ETX
"AB"" C"°DE" AB" C"DE

Observe the text-quotes and the embedded space in the last example.

1.3.4.4 CHARACTER CONSTANTS

character-constant

= "'" character-designator *'°*
character-designator

= ISO0-code

! any-printing-character

The form of a character literal is a single quote (') followed by
either one printing character, or by an IS0-code as explained above,

and delimited by a single quote.

A character data item is a byte containing the IS0 code of the
charactér value.

1.3.5 TOKEN SEPARATORS

Direct-comments, spaces (except in simple strings and character
literals), and the separation of consecutive lines are called token
separators. Zero or more token separators may occur between any two
consecutive tokens, or before the first token of a program text. There
must be at least one token separator between any pair of consecutive
tokens made up of identifiers, keywords, simple strings or arithmetic
literals. No token separators may occur within tokens.

1.4 DIRECTIVE LINES

Directive lines have a % in column 1. If the immediate following
character is a blank, the line is a comment. Otherwise the text of the
line (from column 2) is a directive to the ND-500 SIMULA compiler. The
relevant directives are listed below.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 1"
INTRODUCTION

1.4.1 INCLUDE A SOURCE FILE

This directive will insert the contents of the parameter file at this
place in the source input file. The inserted file cannot contain a
COPY-directive i.e. insertions cannot be nested.

Format: %COPY file-name

1.4.2 CHANGE LISTING PAGE HEADER

This directive will replace the current page header of the compiler
listing file with the string given as the parameter. In addition an
implicit SPAGE is performed. Besides the page header given, the

listing header will contain an identification of the compiler (SIMULA)
and the date and time at which the compilation started.

The page header is initially empty.

Format: %TITLE page-header

1.4.3 CHANGE TO NEW PAGE IN LISTING

This directive will change page in the listing file. If the current
page header is non-empty (see above) then it will be printed on top of
the new page.

Format: APAGE

1.4.4 TURN COMPILATION LISTING ON OR OFF

These directives control whether or not to generate a listing of the
source program during compilation. Note that the LISTING command
supercedes these directives, i.e. the directives are significant only
if the listing level is greater than zero (see page 189). Initially
listing is ON.

Format: SLIST ON
%SOURCE

These directives will cause the following lines to be lisied,

Format: ALIST OFF
ANOSOURCE

These directives will cause listing to be switched off. If listing was
in effect the directive line is printed.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

12 ND-500 SIMULA REFERENCE MANUAL
INTRODUCTION

1.4.5 CHANGE SIGNIFICANT LINE LENGTH OF SOURCE FILE

Initially the whole source line will be considered significant, i.e.
all characters are treated by the compiler. This directive may be used
if only the first part of the line shall be used as source text; the
last positions may for instance contain a version identification.

Format: ASLENGTH integer literal

The parameter value must be less than or equal to INPLTH (see page
191).

1.5 COMMENT CONVENTIONS

An end-comment is a sequence of characters following the keyword END.
The character sequence is terminated by one of the symbols END, ELSE,
WHEN, OTHERWISE, or semicolon. Apart from possibly listing it, the
compiler will ignore this character sequence (but the embracing
symbols are significant).

A direct-comment consists of the exclamation mark, or alternatively
the keyword COMMENT, followed by a sequence of characters, and
terminated by a semicolon. The compiler will replace the sequence
(including the embracing ! and ;) with a space after possibly listing
it, but before performing any further analysis. Thus a direct-comment
may be used to separate simple strings with the concatenation effect
as described above.

Note that neither end- nor direct-comments are recognized within a
simple string. Also, the comment structure encountered first takes
precedence, i.e. nesting of comments is not allowed.

1.6 PROGRAM EXCHANGE CONSIDERATIONS

¥henever program exchange between different SIMULA implementations 1is
considered, some additional rules should be obeyed in order to avoid

trivial problems.

The significant line 1length of the program should be at most 72
characters. Identifiers should consist of at most 12 characters. A
class should be declared before its use as a prefix. The procedures
“isorank® and ®isochar® should be used, instead of "rank® and “char"”
respectively.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 13
INTRODUCTION

1.7 STATEMENTS AND DECLARATIONS

The general structure of SIMULA source modules is a sequence of
statements and declarations, composed of keywords and other tokens as
described above. Statements describe actions to be taken when the
program is executed, while declarations in principle describe
properties of the objects manipulated through these actions.

A statement may be identified by an identifier (a label) followed by a
colon, which precedes the statement. Labels provide a means of
changing the otherwise sequential execution of statements. Labels (and
other identifiers defined by the program) obey certain scope rules,
i.e. their wvisibility 1is restricted according to the general rules
given on pages 25 to 26, and 32 to 43.

Some statements, namely the so-called blocks, nay contain
declarations; all declarations are then given as the first part of
such a statement.

The reverse is also true, in the case of declarations of procedures
and classes. These declarations may contain statements describing the
action or actions associated with the entity. :

SIMULA is a relatively free-format language, 1i.e. the statement
structure 1is not tied in with the line structure of the input medium.
Thus e.g. a statement may commence anywhere on .a line, and it may
continue for as many lines as necessary. It is however advisable that,
in order to improve readability and understandability of the program,
~a certain structure be imposed upon the text by the programmer. No
recommendations or rules for structured programming will be given in
this manual, but hints may be derived from the example programs.

1.8 THE LINE STRUCTURE OF SOURCE MOOWLES

A source module is either a main program, or it is a declaration of a
procedure or a class. It consists of a sequence of lines. The actual
length of lines may vary within one module, subject to the restriction
that the length of a source line is limited to the wvalue of INPLTH
(cf. page 191). Normally the compiler will treat the whole line, it is
however possible to restrict the compiler interpretation to only the
first part of the line (see page 12 above).

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

14

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

ND-500 SIMULA RE#ERENCE MANUAL

CHAPTER 2

IHE_S-PORT SIMULA SYSTEM

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

15

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 17
THE S-PORT SIMULA SYSTEM

2 THE $S-PORT SIMULA SYSTEM

This chapter contains information about the SIMULA system that is not
necessary for normal use of the system. Thus it may be skipped at a

first reading.

The ND-500 SIMULA system is based upon the portable system called
S-port. It consists of two major parts, a c¢ompjler and a
run time system. Both of these consists again of two parts, namely a
(machine independent) portable part, and a part developed specifically
for the ND-500. i

2.1 THE COMPILER

The SIMULA compiler performs syntactic and semantic checking of the
source module, and produces a loadable NRF-file. It has two wmajor
components, the front end compiler (FEC), and the code generator

orS-compiler.

The compiler runs in three passes.

2.1.1 THE FRONT ENO COMPILER (FEC)

FEC is the portable part of the compiling system, and consists of the
first two compiler passes. It performs all checking of the syntactical
and static semantic structure of the source input, and converts the
text into a standardized intermediate form called S-code.

FEC 1is responsible for almost all messages generated during a
compilation, and due to this the wording of error messages and
diagnostics will be the same on all S-port based compilers. This is
convenient when a programmer moves from one system to another.

Many directive lines are also treated by FEC, thus the use and meaning
of at least the directives mentioned in chapter 1 are common to all
S-port systems.

2.1.2 THE S-COMPILER

The S-compiler receives the S-code from FEC and translates it into
NRF. Due to the nature of the compiler, the possible messages from
this part of the compiler are related to machine dependencies such as
the actual value range of literals, the capacity of the machine and
the compiler, etc. For moderate sized programs no diagnostic messages
from the S-compiler should normally occur.

ND-60.208.1 EN

— ScannedbyJonny Oddene for Sintran Data © 2010

18) ND-500 SIMULA REFERENCE MANUAL
THE S-PORT SIMULA SYSTEM

2.2 THE RUN TIME SYSTEM

The ND-500 SIMULA run time system consists of two parts, the machine
independent RTS and the ND-500 specific Environment Interface or EI.
Both parts consist of many NRF files, collected into a library
normally called ND-SIMULA-AROC.

Most messages given by the run time system during the execution of a
compiled and 1linked SIMULA program originate within RTS, i.e. the

convenience of homogenous error messages fron S-port based
implementations is preserved.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

19

20

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 21
DECLARATIONS

J DECLARATIONS

3.1 DATA TYPES

type
= value-type
! reference-type

value-type
= integer-type
! real-type
! “Boolean”
! *character*

integer-type
= ("short”) ‘inteqer®

real-type
= ("long) ’“real"”

reference-type
= object-reference
! "text"

object-reference
= "ref" "(* qualification *)°

qualification
= class-identifier

The various types basically denote properties of values. In addition,
a reference-type identifies a value, called the referenced value.

A value is primarily a number, a logical value, a label, an object, a
single character, or an ordered sequence of characters.

The value of an array identifier is the ordered set of values of the
constituent array components.

3.2 ARITHMETIC TYPES
Arithmetic types are used for representing numerical values. The types
are integer-type and real-type. Integer-type is either jnteqer or

short inteqer. Real-type is either real or long real. The types short
inteqer and long real are subject to the following rules.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

22 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

J.2.1 SHORT INTEGER

The type short integer serves to represent integer values whose value
range may be a subset of that of integer. Apart from this, short
inteqer and jinteger are fully compatible in this language definition.

3.2.2 LONG REAL

Type long real serves to represent real values capable of retaining a
higher precision than that of the type real. The relative value range
of the respective types is not defined: Apart from this, long real and
real are fully compatible in this language definition.

3.3 THE TYPE BOOLEAN

The type Boolean represents logical values. The range of values
consists of the values trye and false.

3.4 THE TYPE CHARACTER

The type character is used to represent single characters. Such a
value is an instance of an ‘internal character”. For any given
implementation there 1s a one-to-one papping between a subset of
internal characters and external ("printable®) characters. The
character sets (internal and external) are implementation defined.

3.5 REFERENCE TYPES

The reference concept corresponds to the notion of a "name” or a
‘pointer". It provides a mechanisam for referencing values.

3.5.1 OBJECT REFERENCE

Associated with an object there is a unique "object reference" which
identifies the object. And for any class C there is an associated
reference-type ref (C). A quantity of that ¢type is said to be
qualified by ¢the class C. Its value is either an object, or the
special value none which represents °no object®. The qualification
restricts the range of values to objects of classes included in the
qualifying class. The range of values includes the value pone
regardless of the qualification.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 23
DECLARATIONS

3.5.2 THE TYPE TEXT
The type text serves to declare or specify a text variable quantity.

A text value is an ordered sequence, possibly empty, of characters.
The number of characters is called the °*length® of the text value.

A text frame is a memory device which contains a nonempty text value.
A text frame has a fixed length and can only contain text values of
this length. A text frame may be "alterable® or “constant’. A constant
frame always contains the same text value. An alterable text frame may
have its contents modified.

A text reference identifies a text frame. The reference is said to
possess a value, which is the contents of the identified frame. The
special text reference notext identifies “no frame®. The value of
notext is the empty text value.

Text objects and text frameg

A “"text object” is conceptually an instance of the following class
declaration (cf. page 32 et seq):

clags TEXTOBJ(SIZE,CONST);
inteqer SIZE; Boolean CONST;
beqin character array MAIN(1:SIZE); end;

Any non-empty sequence of consecutive elements of the array attribute
MAIN constitutes a text frame. More specifically, any text frame is
completely identified by the following pieces of information:

1) a reference to the text object containing the frame,

2) the start position of the frame, being an integer within the
subscript bounds of the MAIN attribute of that text object,

3) the length of the frame.

A frame which is completely contained in another frame is said to be a
"subframe" of that other frame. The text frame associated with the
entire array attribute MAIN is called the "main frame® of the text
object. All frames of the text object are subframes of the main frame.
Note: A main frame is a subframe of no frame except itself.

The frames of a text object are either all constant or all variable,
as indicated by the attribute CONST. The value of this attribute
remains fixed throughout the lifetime of the text object. A constant
main frame always corresponds to a string (see page 9).

The attribute SIZE is always positive and remains fixed throughout the
lifetime of a text object.

ND-60.208.1 EN

Scanned-byJonny Oddene for Sinfran Data @ 2010

Tt Y

24 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

The identifier TEXTOBJ, as well as the three attribute identifiers,
are not accessible to the user. Instead, properties of a text object
are accessible through text variables.

3.6 TYPE QUALIFICATION

The identifying qualification (a reference type) conforms to the rules
of all other identifiers, i.e. the quantity is defined upon block
entry and loses its significance at block exit (cf. page 25). By
consequence, the type qualification defined upon block entry of a
block is not valid in any other block instance, even if the blocks are
created from the same (textual) declaration in the program.

Example:

class a;
begin class b; ; rzef (b) axb; and a;

a c¢lass aa;
begin ref (b) aaxb; end aa;

ref (a) al; ref (aa) a2;

inspect a2 do
inspect a1 do aaxb:- new b;

Wwill constitute a runtime error whenever al and a2 reference
different objects. Thus, replacing above with

at:- a2:~ new aa;
will lead to a valid program, while the replacement

al:- pew a; (or atl:- pew aa)
az2:- pew aa;

is illegal.

3.7 SUBORDINATE TYPES

An object reference 1is said to be "subordinate” to a second object
reference if the qualification of the former is a subclass of the
class which qualifies the latter.

A proper procedure is said to be of a universal type. Any type is
subordinate to the universal type.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 25
DECLARATIONS

3.8 TYPE TRANSFER

Values may in some cases be transfered (or converted) from one type to
another.

Conversion between arithmetic types follows the rules described on
page 59. In addition the procedure "entier*, converting from real type
to integer, is described on page 154.

Conversion between text and arithmetic type values is described on
page 126 (text attributes "getint®, °putint®, “getreal”, “putreal’,
getfrac, °‘putfrac‘).

Conversion between character and text values is described on page 121
{text attributes °“getchar®, “putchar").

Conversion between character and jinteqer values is described on page
155 ("isorank®, "rank", ‘isochar", “char").

3.9 DECLARATIONS

declaration
= simple-variable-declaration
I array~-declaration
! switch-declaration
! procedure-declaration
! class-declaration
! external-declaration

Declarations serve to define certain’'properties of the quantities used
in the program, and to associate them with identifiers. A declaration
of an identifier is valid for one block. Qutside this block the
particular identifier may be used for other purposes.

Dynamically this implies that at the time of an entry into a block all
identifiers declared for the block assume the significance implied by
the nature of the declarations given. If these identifiers are also
defined by other declarations outside the block, they are for the time
being given a new significance, which is called *"local®”. 1Identifiers
which are not declared for the block, on the other hand, retain their
old meaning.

At the time of an exit from a block (through end, by a goto-statement,
or through a sequencing procedure call) all identifiers which are
declared for the block loose their local significance.

Apart from labels, formal-parameters of procedure- and class-
declarations, and identifiers declared in the environmental prefix,

each identifier appearing in a program must be explicitly declared
within the program.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

26 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

No identifier may be declared either explicitly or implicitly more
than once in any one block-head.

For information on external declarations, please refer to pages 131
through 136.

3.10 SIMPLE VARIABLE DECLARATIONS

simple-variable-declaration
= type type-list

type-list
= type-list-element (* *," type-list-element *)

type-list-element
= identifier
! constant-element

Type declarations serve to declare certain identifiers to represent
simple variables of a given type.

A variable local to a block instance is a memory device whose
"contents" is either a value or a reference, according to the type of
the variable. A value type variable has a value which is the contents
of the variable. A reference type variable is said to have a value
which is the one referenced *by the contents of the variable. The
contents of a variable may be changed by an appropriate assignment
operation (see page 69).

3.10.1 VALLE TYPE YARIABLES

Real declared variables may assume positive and negative values
including zero.

Integer declared variables may assume positive and negative integral
values including zero.

Boolean declared variables may assume the values true and false.

Character declared variables may assume the values previously defined
as character values (see page 4).

The type declarations short integer and long real are extensions of
the standard arithmetic types. An implementation may choose to support

both, neither, or either of them alone.

Apart from the special considerations described below the types short

integer and long real are fully compatible with types inteqer and real
respectively, and they can consequently be used in any place where

inteqer or real occur in the language definition outside these
paragraphs.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 27
DECLARATIONS

The type declaration ghort integer serves to declare identifiers
representing inteqer variables whose value range is a subset of that
of jinteger variables. In an expression any position which can be
occupied by an jnteger declared variable may be occupied by a short
integer declared variable.

The type declaration lopng real serves to declare identifiers
representing variables capable of retaining a higher precision of
floating point values than variables of type real. In an expression
any position which can be occupied by a variable or number of type
real may be occupied by a variable or number of type long real.

3.11 ARRAY DECLARATION

array-declaration
= array-declarer array-segment (* "," array-segment *)

array-declarer
= [type) array

array-segment
= array-identifier (* "," array-identifier *)
(bound-pair-list *")*

bound-pair-list
= bound-pair (*

, " bound-pair *)

bound-pair
= lower-bound ":" upper-bound

lower-bound
= arithmetic-expression

upper-bound .
= arithmetic-expression’

An array-declaration declares one or several identifiers to represent
multidimensional arrays of subscripted variables, and gives the
dimensions of the arrays, the bounds of the subscripts, and the type
of the variables. !

The subscript bounds for any array are given in the first subscript
brackets following the identifier of this array, in the form of a
bound-pair-list. Each item of this list gives the lower- and upper-
bounds of a subscript in the form of two arithmetic-expressions
separated by “:". The bound-pair-list gives the bounds of all
subscripts taken in order from left to right.

The dimensions are given as the number of entries in the bound-pair-
lists.

ND-60.208.1 EN

28 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

All arrays declared in one declaration are of the same quoted type. If
no type declarator is given the type real is understood.

The expressions will be evaluated in the same way as subscript
expressions.

The expressions cannot include any identifier that is declared, either
explicitly or implicitly, in the same block-head as the array in
question.

An array is defined only when the values of all upper-bounds are not
smaller than those of the corresponding lower-bounds. If any lower-~
bound is greater than the corresponding upper-bound, the array has no

component.

The expressions will be evaluated once at each entrance into the block
through the block-head.

The value of an array-identifier is the ordered set of values of the
corresponding array of subscripted variables.

Examples:

array a,b,c{7:n,2:m), s(-2:10)
lntegexr arrav a(2:20)
real arzay q{-7:if c<O0 thep 2 else 1)

3.12 SWITCH DECLARATION

switch~declaration
= “switch® switch~identifier ":=" switch-list

switch~-list
= designational-expression (* "," designational-expression %)

A switch-declaration defines the set of values of the corresponding
switch-designators. These values are given one by one as the values of
the designational-expressions entered in the switch-list. With each of
these designational-expressions there is associated a natural number
(1,2, ...) obtained by counting the items in the list from left to
right. The value of the switch-designator corresponding to a given
value of the subscript expression is the value of the designational-
expression in the switch-list having this given value as its
associated integer.

An expression in the switch-list will be evaluated every time the item
of the list in which the expression occurs is referred to, using the
current values of all variables involved.

I1f a switch-designator occurs outside the scope of a quantity entering
into a designational-expression in the switch-list, and an evaluation
of this switch-designator selects this designational-expression, then
the conflicts between the identifiers for the quantities in this
expression and the identifiers whose declarations are valid at the

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 29
DECLARATIONS

place of the switch-designator will be avoided through suitable
systematic changes of the latter identifiers.

Examples:

switch s:=31,s2,q(m), if v>-5 then s3 else s4
switch q:=pl,w

3. 13 PROCEDURE DECLARATION

procedure-declaration
= (type) ‘"procedure" procedure-heading procedure-body

procedure-heading o
= procedure~identifier

{ formal-parameter-part °;" (mode-part)}
specification-part)

procedure-body
= statement

procedure-identifier
= identifier

A procedure-declaration serves to define the procedure associated with
a procedure-identifier. The principal constituent of a procedure-
declaration is a statement or a piece of code, the procedure-body,
which through the use of procedure statements and/or function
designators may be activated from other parts of the block in the head
of which the procedure-declaration appears.

Associated with the body is a heading, which specifies certain
identifiers occurring within the body to represent formal-parameters.
Formal parameters in the procedure-body will, whenever the procedure
is activated, be replaced by the values of the actual parameters (cf.
page 31), ldentifiers in the procedure-body which are not formal will
be either local or non-local to the body depending on whether they are
declared within the body or not. Those of them which are non-local to
the body may well be local to the block in the head of which the
procedure-declaration appears.

The procedure-body always acts like a block, whether it has the form
of one or not. Consequently the scope of any label labelling a
statement within the body or the body itself can never extend beyond
the procedure-body. In addition, if the identifier of a formal-
parameter is declared anew within the procedure-body, it is thereby
given a local significance and actual parameters which correspond to
it are inaccessible throughout the scope of this inner local quantity.

No identifier may appear more than once in any one formal-parameter-
list, nor may a formal-parameter-list contain the procedure-identifier
of the same procedure-heading.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

30 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

Examples:
procedure transpose(a,n);
array a; integer n;
begin real w; integer i, k;
for i:=1 step 1 until n do
for k:=1+i step 1 until n do
begin w:=a(i,k);
a(i,kx):=a(k,i);
a(k,1):=w
end
end transpose;

integer procedure factorial(n); integer n;
factorial:= if n=0 then 1 else n*factorial(n-1);

procedure absmax(a,n,m,y,i,k);
name i, kX, y ; array a; integer n,m,i,k; real y;
comment The absolute greatest element of the matrix a, of size n
by m is transferred to y, and the subscripts of this element to
i and k;
begin integer p,q;
y:=0; i:=k:=1;
for p:=t step 1 until n do
for q:=1 step 1 until m do
if abs(a(p,q))>y then
begin y:=abs(a(p,q));
i:=p; k:=q
end
end absmax;

procedure innerproduct(a,b,k,p,y); name p,y,a,b;
integer k,p; real y,a,b;
begin real s; integer pp;

s:=0;

for pp:=1 step 1 until k do

begin p:= pp; s:=s+a*b; end;

y:=s

end innerproduct;

text procedure mystrip(t); text t;
mystrip:- if t.sub(t.length,1)=" * then
) mystrip(t.sub(i,t.length-1)) else t;

3.13.1 YALUES OF FUNCTION DESIGNATORS

For a procedure-declaration to define the value of a function
designator there must, within the procedure-body, occur one or more
uses of the procedure-identifier as a destination; at least one of
these must be executed, and the type associated with the procedure-
identifier must be declared through the appearance of a type
declarator as the very first symbol of the procedure-declaration. The
last value so assigned is wused to continue the evaluation of the
expression in which the function designator occurs. Any occurrence of
the procedure-~identifier within the body of the procedure other than

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 31
DECLARATIONS

as a destination in an assignment statement denotes activation of the
procedure.

If a goto-statement within the procedure, or within any other
procedure activated by it, leads to an exit from the procedure, other
than through its end, then the execution of all statements that have
been started but not yet completed, and which do not contain the label
to which the goto-statement leads, is abandoned. The values of all
variables that still have significance remain as they were immediately
before execution of the goto-statement (cf. page 149).

If a function designator is used as a procedure statement, then the
resulting value is discarded, but such a statement may be used, if
desired, for the purpose of invoking side effects.

3.13.2 PARAMETER SPECIFICATION

formal-parameter-part
= "(" formal-parameter-list *")®

formal-parameter-list
= formal-parameter (* *," formal-parameter *)

formal-parameter
= identifier

specification-part
= (* specifier identifier-list *;" *)

specifier
= type
! array-declarer
t "label”
! *switch®
! (type) ‘“procedure®

The procedure-heading includes a specification-part, giving

information about the kinds and types of the formal-parameters. In
this part no formal-parameter may occur more than once.

3.13.3 PARAMETER TRANSMISSION MODES

rode-part
= name-part { value-part)
! value-part { name-part)}

name-part
= "name*® identifier-list *;"

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

32 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

value-part
= ‘*value® identifier-list ;"

identifier-list
= jdentifier (* “," identifier *)

There are three modes of parameter transmission: *call by value®,
"call by reference", and °"call by name".

The default transmission mode is call by value for value type
parameters and call by reference for all other kinds of parameters.

The available transmission modes are shown in fiqure 3.1 for the
different kinds of parameters of procedures.

Fiqure 3.1: Transmission Modes for Parameters of Procedures
Transmission modes
Parameter
by value by reference by name
value type D I 0
object reference I D 0
text 0 D o]
value type array 0 D 0
reference type array I D 0
procedure I D 0
type procedure I D 0
label I D o}
L switch 1 D 0
D: default mode ©: optional mode I: illegal

J.14 CLASS DECLARATION

class-declaration
= (prefix) main-part

prefix
= class-identifier

main-part
= “class” class-identifier
(formal-parameter-part *;° { value-part)
specification-part)}
{ protection-part) [virtual-part)
class-body

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL kK]
DECLARATIONS

class-identifier
= identifier

class-body
= statement
! split-body

split-body
= initial-operations inner-part final-operations

initial-operations
= ("begin” ! block-head)} (* statement *;" *)

inner-part
= (* label ":" *) “inner”

final-operations
= "end”
{ ";* compound-tail

A class-declaration serves to define the class associated with a
class-identifier. The class consists of "objects” each of which is a
dynamic instance of the class-body.

An object 1s generated as the result of evaluating an object-
generator, which is the analogy of the 'call' of a functicn-designator
(see page 51).

A class-body always acts like a block. If it takes the form of a
statement which 1s not an unlabelled block, the class-body 1is
identified with a block of the form:

begin; S end;

where S is the textual body. A split-body acts as a block in which the
symbol inner represents a dummy statement.

For a given object the formal-parameters, the quantities specified in
the wvirtual-part, and the quantities declared local to the class-body
are called the “"attributes® of the object. A declaration or
specification of an attribute is called an “attribute definition®.

Specification (in the specification-part) 1is necessary for each
formal-parameter. The parameters are treated as variables local to the
class-body. They are initialized according to the rules of parameter
transmission (ses page 40). Call by name is not available for
parameters of class-declarations. The following specifiers are
accepted:

(type>, array, and <(type) array.

Attributes defined in the wvirtual-part are called “virtual
quantities®. They do not occur in the formal-parameter-list. The
virtual quantities have some properties which resemble formal-
parameters called by name. However, for a given object the environment
of the corresponding "actual parameters® is the object itself, rather
than that of the generating call.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

34 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

Identifier conflicts between formal-parameters and other attributes
defined in a class-declaration are illegal.

The declaration of an array attribute may, in a constituent subscript
bound expression, make reference to the formal-parameters of the
class-declaration; thus subscript bound expressions, which refer to
attributes other than the formal-parameters of the class-declaration
or its prefixes, are illegal.

3. 14.1 SUBCLASSES

A class-declaration with the prefix "C* and the class-identifier "D*
defines a subclass D of the class C. An object belonging to the
subclass consists of a "prefix part®, which is itself an object of the
class C, and a "main-part® described by the main-part of the class-
declaration. The ¢two parts are "concatenated® to form one compound
object. The class C may itself have a prefix.

Let C1, C2, , Cn be classes such that C1 has no prefix and Ck has
the prefix Ck-1 (k = 2,3,..... , n). Then C1,C2, , Ck-1 is called
the "prefix sequence® of Ck (k =2, 3, , n). The subscript Xk of
Ck (k=1,2, , h) is called the “prefix level® of the class. Ci
is said to "include® Cj if i <= j, and Ci is called a "subclass" of Cj
if L >3 (i, 3 =1,2, ..., n). The prefix level of a class D is said

to be “inner” to that of a class C if D is a subclass of C, and
‘outer” to that of C if C is a subclass of D. Figure 3.2 depicts a
class hierarchy consisting of five classes, A, B, C, D and E:

class A ;
class B ;
class C ;
class D H
class E ;

>w w >

A capital letter denotes a class. The corresponding lower case letter
represents the attributes of the main-part of an object belonging to
that class. The object structures shown in figure 3.3 indicate the
allocation in wemory of the values of those attributes which are
simple variables.

The following restrictions must be observed in the use of prefixes:
1) A class must not occur in its own prefix sequence.
2) A class may be used as a prefix only at the block level at
which it 1s declared. A system class is considered to be
declared in the smallest block enclosing its first textual

occurrence. An implementation may restrict the number of
different block levels at which such prefixes may be used.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL
A TR St 35

Figure 3, 2: A Class Hierarchy

class A
includes: A,B,C,D,E
A outer to: B,C,D,E
class B
includes: B,C,D . .
outer to: C,D B E
inner to: A
C D
Fiqure 3.3: Objects of Classes A, B, C, D and E Respectively
]
a a a a a
b b b e
c 4
Concatenation
Let Cn be a class with the prefix sequence C1, C2, , Cn-1, and

let X be an object belonging to Cn. Informally, the concatenation
mechanism has the following consequences.

1) X has a set of attributes which is the union of those defined
in €1, €2, , Cn. An attribute defined in Ck (1 <= k (=
n) is said to be defined at prefix level k.

2) X has an "operation rule” consisting of statements from the

bodies of these classes in a prescribed order. A statement
from Ck is said to belong to prefix level k of X.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

36 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

3) A statement at prefix level k of ¥ has access to all
attributes of X defined at prefix levels equal to or outer to
k, but not directly ¢to attributes "hidden® by conflicting
definitions at levels ¢ k. (These "hidden" attributes may be
accessed through use of procedures.)

4) A statement at prefix level k of X has no immediate access to
attributes of X defined at prefix levels inner to k, except
through virtual quantities (cf. page 38).

5) In a split-body at prefix level k, the symbol jipner
represents those statements in the operation rule of X which
belong to prefix levels inner to kX, or a dummy statement if k
=n. If none of C1, , Cn-1 have a split-body, the
statements in the operation rule of X are ordered.

A compound object could be described formally by a "concatenated®
class-declaration. The process of concatenation is considered to take
place prior to program execution. In order to give a precise
description of that process, we need the following definition.

An occurrence of an identifier which is part of a given block is said
to be an “uncommitted occurrence in that block", except if it is the
attribute identifier of a remote identifier (see page 50), or is part
of an inner block in which it is given a local significance. In this
context a "block" may be a class-declaration not including its prefix
and class-identifier, or a procedure-declaration not including its
procedure-identifier. (Observe that an uncommitted identifier
occurrence 1in a block may well have a local significance in that
block.)

The class-declarations of a given class hierarchy are processed 1in
order of ascending prefix levels. A class-declaration with a non-empty
prefix is replaced by a concatenated class-declaration obtained by
first modifying the given one in two steps.

1) If the prefix refers to a concatenated class-declaration, in
which identifier substitutions have been carried out, then
the same substitutions are effected for uncommitted
identifier occurrences within the main-part.

2) If now identifiers of attributes defined within the main-part
have uncommitted occurrences within the prefix class, then
all uncommitted occurrences within the main-part of these
identifiers are systematically changed to avoid name
conflicts. Identifiers corresponding to virtual quantities
defined in the prefix class are not changed.

The concatenated class-declaration is defined in terms of the given
declaration, modified as above, and of the concatenated declaration of
the prefix class.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SI

MULA REFERENCE MANUAL 37

DECLARATIONS

1)

2)

X))

4)

An object
Cartesian

Its formal-parameter-list consists of that of the prefix
class followed by that of the main-part.

Its value-part, specification-part, and virtual-part are the
unions (in an informal but obvious sense) of those of the
prefix class and those of the main-part. If the resulting
virtual-part contains more than one occurrence of some
identifier, the virtual-part of the given class-declaration
is illegal.

Its class-body is obtained from that of the main-part in the
following way, assuming the body of the prefix class is a
split-body. The begin of the block-head is replaced by a copy
of the block-head of the prefix body. A copy of the initial-
operations of the prefix body is inserted after the block-
head of the main-part, and the end of the compound tail of
the main-part is replaced by a copy of the compound tail of
the prefix body. If the prefix class-body is not a split-
body, it is interpreted as if the symbols ";inner" were
inserted in front of the end of its compound tail. If in the
resulting class-body two matching declarations for a virtual
quantity are given, the one copied from the prefix class-body
is deleted. .

The declaration of a label is its occurrence as the label of
a statement.

class point(x,y); real x,y;
begin ref (point) procedure plus(P); ref (point) P;
plus:- new point(x+P.x, y+P.y);
end point;

of the class point is a representation of a point in a
plane. [ts attributes are x, y and plus, where plus

represents the operation of vector addition.

point class polar;
begin real r,v;
ref (polar) procedure plus(P); ref (point) P;
plus :- new polar(x+P.y, y+P.y);
r:= sqrt(x**2 + y**2);
v:= arctan{(x,y);
end polar;

An object of the class polar is a "point® object with the additional
attributes r, v and a redefined plus operation. The values of r and v
are computed and assigned at the time of object generation.

Sca

ND-60.208.1 EN

nned by Jonny Oddene for Sintran Data © 2010

38 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

3.14.2 VIRTUAL QUANTITIES

virtual-part
= “"virtual® *:" specification-part

Virtual quantities serve a double purpose:

1) to give access at one prefix level of an object to attributes
declared at inner prefix levels, and

2) to make attribute re-declarations at one prefix level valid
at outer prefix levels.

The following specifiers are accepted in a virtual-part:

label, switch, procedure and <type) procedure.

A virtual quantity of an object is either "unmatched® or is identified
with a "matching” attribute, which is an attribute whose identifier
coincides with that of the virtual quantity, declared at the prefix
level of the virtual quantity or at an inner one. The matching
attribute must be of the same kind as the virtual quantity. At a given
prefix level, the type of the matching quantity must coincide with or
be subordinate to that of the virtual specification and that of any
matching quantity declared at any outer prefix level.

At any given prefix level PL inner or equal to that of a virtual
specification, the type of the virtual quantity is:

1) that given in the virtual specification, if there is no match
at prefix levels outer or equal to PL.

2) that of the match at the innermost prefix level outer or
equal to PL, if there is a match at a prefix level outer or
equal to PL.

It is a consequence of the concatenation mechanism that a virtual
quantity of a given object can have at most one matching attribute. If
matching declarations have been given at more than one prefix level of
the class hierarchy, then the one 1is valid which is given at the
innermost prefix level outer or equal to that of the main-part of the
object. The match is valid at all prefix levels of the object equal or
inner to that of the virtual specification.

Example:

The following class expresses a notion of “hashing®, in which the
"hash" algorithm itself is a °"replaceable part®. "Error®” is a suitable
non-local procedure.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

.
ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

class hashing (n); integer n;
virtual: integer procedure hash;
begin integer procedure hash(t); value t; text t;
begin integer i;
while t.more do i:= i + rank(t.getchar);
hash:= mod(i,n);
end hash;
text array table (0:n-1); integer entries;
integer procedure lookup (t,old);
name old; value t; Boolean old; text t;
begin integer i,istart; Boolean entered;
i:= istart:= hash(t);
while not entered do
begin if table(i)==notext then
begin table(i):- t;
entries:= entries + 1;
entered:= true;
end else if table(i) = t then
old:= entered:= true
else begin i:= 1 + 1;
if i=istart then
error(“Table full.");
if L = n then i:= 0;
end;
end;
lookup:= i;
end lookup;
end hashing;

hashing class ALGOL hash;
begin integer procedure hash(T); value T; text T;
begin integer i; character c;
while T.more do
begin c:= T.getchar;

if ¢ <> ' ' then i:= 1 + rank(c);
end;
hash:= mod(i,n);
end hash;

end ALGOL hash;

3.14.3 ATTRIBUTE PROTECTION

protection-part
= protection-specification (* protection-specification

protection-specification
= "hidden® identifier-list *;"
! “protected® identifier-list *;*
! "hidden" °protected" identifier-list *;"
{

‘protected® “"hidden® identifier-list *;"

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

*)

40 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

The protection-specification makes it possible to restrict the scope
of class attribute identifiers.

A class attribute, X, which is specified protected in class C is only
accessible:

1) within the body of C or its subclasses, and
2) within the blocks prefixed by C or any subclass of C.

In any other context the meaning of the identifier X is as if the
attribute definition of X were absent.

Access to a protected attribute is, subject to the restriction above,
legal by remote accessing.

A class attribute may only be specified protected at the prefix level
of its definition. Note that a virtual attribute may only be specified
protected in the same class heading where the virtual specification is
placed.

Attributes of the classes Simset and Simulation are protected.

A class attribute, X, specified hjdden in class ¢ 1is not accessible
within subclasses of C or blocks prefixed by C or any subclass of C.
In this context the meaning of the identifier X is as if the attribute
definition of X were absent.

Observe that specifying a virtual quantity hidden effectively disables
further matching at inner levels.

Only a protected attribute may be specified hidden, however the hidden
specification may occur at a prefix level inner to the protected
specification.

The effect of specifying an attribute hidden protected or protected
hidden 1is identical to that of specifying it as both protected and

hidden.

Conflicting or 1illegal hidden and/or protected specifications
constitute a compile time error.

Note that if there are several attributes with the same identifier in

the prefix sequence to a hjdden specification, and these are
previously protected, but not hjdden, the innermost accessible

attribute will be hidden.

3.14.4 PARAMETER TRANSMISSION MODES

There are two modes of parameter transmission available for classes:
"call by value" and "call by reference".

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 41
DECLARATIONS

The default transmission mode is call by value for value type
parameters and call by reference for all other kinds of parameters.

The available transmission modes for parameters of class-declarations

are shown in figure 3.4. For parameters of procedure declarations, see
figure 3.1.)

Figure 3.4: Transmission Modes for Parameters of Classes

Transmission modes

Parameter

by value by reference
valuye type D I
object reference 1 D
text o] D
value type array 0 D
reference type array I D

D: default mode O: optional mode I: 1illegal

3.14.5 REMOTE ACCESSING

An attribute of an object is identified completely by the following
items of information:

Item 1: the object,

Item 2: a class which is outer to or equal to that of the object, and

Item 3: an attribute identifier defined in that class or in any class
belonging to its prefix sequence.

Item 2 is textually defined for any attribute identification. The
prefix level of the class is called the "access level® of the
attribute identification.

Consider an attribute identification whose item 2 is the class C. 1Its
attribute identifier, item 3, 1is subjected to the same identifier
substitutions as those which would be applied to an uncommitted
occurrence of that identifier within the main-part of C, at the time
of concatenation. In that way, name conflicts between attributes
declared at different prefix levels of an object are resolved by
selecting the one defined at the innermost prefix level not inner to
the access level of the attribute identification.

An uncommitted occurrence within a given object of the identifier of
an attribute of the object 1is itself a complete attribute
identification. 1In this case items 1 and 2 are implicitly defined, as
respectively the given object and the class associated with the prefix
level of the identifier occurrence.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

42 ND-500 SIMULA REFERENCE MANUAL
DECLARATIONS

If such an identifier occurrence is located in the body of a
procedure-declaration (which is part of the object), then, for any
dynamic instance of the procedure, the occurrence serves to identify
an attribute of the given object, regardless of the context in which
the procedure was invoked.

Remote accessing of attributes, i.e. access from outside the object,
is either through the mechanisa of “remote identifiers® (*dot
notation®") or through "connection®.

A text variable is (itself) a compound structure in the sense that it
has attributes accessible through the dot notation (cf. page 50).

3.14.6 STANDARD PROCEDURE ATTRIBUTE ‘DETACH®

Any class that has no (textually given) prefix will by definition be
prefixed by a fictitious class whose only attribute is:

procedure detach; ... ;

Thus every class object or instance of a prefixed block has this
attribute.

3.15 SCOPE OF DECLARED IDENTIFIERS

The scope of a quantity is the set of statements and expressions in
which the declaration of the identifier associated with that quantity
is valid.

Identifiers may be chosen freely; they have no inherent meaning, but
serve for the identification of language quantities, i.e. simple
variables, arrays, texts, labels, switches, procedures and classes.
Identifiezrs also act as formal-parameters in procedure and class-
declarations, in which capacity they may represent a literal value or
any language quantity but a class.

The same identifier cannot be used to denote two different quantities

except when these quantities have disjoint scopes. This rule also
applies to the formal-parameters of procedure and class-declarations.

3.16 INITIALIZATION

Any declared variable is initialized at the time of entry into the
block to which the variable is local. The initial contents depends on
the type of the variable, as follows:

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 43
DECLARATIONS

real 0.0
integer 0
Boolean false
character 1oL
object reference none
text notext

3. 17 CONSTANT DECLARATIONS

constant-element
= jidentifier
! identifier *

value-expression
string

An identifier which is declared by means of a constant-slement has a
fixed value throughout its scope. The evaluation of the expression
takes place in the same manner as the evaluation of the bounds of an
array. Thus any variables referenced in this expression will
contribute their values at the time of their evaluation, and any
subsequent change will not affect the constant.

The constant declaration is subject to the following restriction: If
the expression contains any identifier that is declared in the same

block-head, then this must be a constant that has been defined
textually before the referencing constant-element.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

44

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

CHAPTER 4

EXPRESSIONS

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

45

46

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

Y

ND-500 SIMULA REFERENCE MANUAL 47
EXPRESSIONS

4 EXPRESSIONS

expression
= value-expression
! reference-expression
! designational-expression

value-expression
= arithmetic-expression
! Boolean-expression
! character-expression

reference-expression
= object-expression
! text-expression

In SIMULA the primary constituents of the programs describing

algorithmic processes are expressions. Constituents of these
expressions, except for certain delimiters, are constants, variables,
function-designators, labels, sWwitch-designators and elementary

operators. Since the syntactic definition of both variables and
function-designators (see below) contain expressions, the definition
of expressions, and their constituents, is necessarily recursive.

A value-expression is a rule for obtaining a value.

An object-expression is a rule for obtaining an object reference.

A text-expression is a rule for obtaining an identification of a text
variable (and thereby a text reference).

A designational-expression 1s a rule for obtaining a reference to a
program point.

Any value-expression or reference-expression has an associated type,
which is textually defined.

4.1 VARIABLES

variable
= sjimple-variable-1
! subscripted-variable

simple-variable-1
= identifier-1

subscripted-variable
= array-identifier-1 *(° subscript-list)"

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

48 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

array-identifier-t
= identifier-1

subscript-list
= subscript-expression (* *," subscript-expression *)

subscript-expression
= arithmetic-expression

A variable local to a block instance is a memory device whose
"contents® is either a value or a reference, according to the type of
the variable. A value type variable has a value which is the contents
of the variable. A reference type variable is said to have a value
which is the one referenced by the contents of the variable. The
contents of a variable may be changed by an appropriate assignment
operation (see page 69).

The value of an array-identifier is the ordered set of values of the
corresponding array of subscripted-~variables.

Variables are of two types, corresponding to the values being
represented; value type variables and reference type variables.

A "reference” is a piece of information which identifies a value,
called the *referenced” value. The distinction between a reference and
the referenced value is determined by context.

The reference concept corresponds to the intuitive notion of a ‘“name®
or a ‘“pointer*. It also reflects the addressing capability of
computers: in certain simple cases a reference could be implemented as
the memory address of a stored value.

There are two reference type types, object reference type and type
text.
Examples:

deta

at7

q(7,2)

x(sin(n®pi/2),q(3,n,4))

Note: There is no reference concept associated with any value type.

4.1.1 SIMPLE VARIABLES
A simple-variable is any variable which is not a subscripted-variable.

Value type variables represent values of type (short) inteqer, (lonq)
real, Boolean or character.

A reference type variable has an object as its value (or the value
none). Text variables are described below.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 49
EXPRESSIONS

4.1.2 TEXT VARIABLES

A text variable is conceptually an instance of a composite structure
with four constituent components (attributes):

ref (TEXTOBJ) OBJ;
integexr START, LENGTH, POS;

Let X be a text variable. Then X.0BJ, X.START, X.LENGTH and X.POS
denote the components of X, respectively. These four components are
not directly accessible to the user. Instead, certain properties of a
text variable are represented by procedures accessible through dot
notation. These procedures are described in chapter 7.

The components OBJ, START and LENGTH constitute the text reference
part of the variable. They identify the frame referenced (see page
23). POS is used for accessing the individual characters of the frame
referenced (see page 121).

The components of a text variable always satisfy one of the following
two sets of conditions:

1) OBJ =/= none START >= 1 LENGTH »>= 1 START + LENGTH <=
OBJ.SIZE + 1 1 (= POS (= LENGTH + 1

2) OBJ == none START = ! LENGTH = O POS = 1

The latter alternative defines the contents of a variable which
references no frame. Note that this alternative thereby defines the

special text reference potext.

4.1.3 SUBSCRIPTED VARIABLES

Subscripted variables designate values which are components of
multidimensional arrays. Each arithmetic-expression of the subscript-
list occupies one subscript position of the subscripted-variable and
is called a subscript. The complete list of subscripts is enclosed in
the subscript parentheses (). The array component referred to by a
subscripted-variable is specified by the actual numerical value of its
subscripts.

Each subscript position acts like a variable of type integer and the
evaluation of the subscript is understocod to be equivalent to an
assignment to this fictitious variable. The value of the subscripted-
variable is defined only if the value of the subscript-expression is
within the subscript bounds of the array.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

-

i
50 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

4.1.4 REMOTE IDENTIFIERS (DOT NOTATION)
attribute-identifier
= identifier
remote~identifier
= simple-object-expression *." attribute-identifier
! simple-text-expression *." attribute-identifier
identifier-1
= identifier
! remote-identifier
Let X be a simple-object-expression qualified by the class C, and let
A be an appropriate attribute-identifier. Then the remote-identifier
"X.A", 1f wvalid, 1is an attribute identification whose cbject is the
value X and whose qualification is C (cf. pages 41 and 63).

The remote-identifier X.A is valid if the following conditions are
satisfied:

1) The value X is different from none.
2) The object referenced by X has no class attribute declared at
any prefix level equal or outer to that of C.
Note: Condition 1 corresponds to a check which causes an error if the
value of X is nonpe.
Condition 2 is an ad hoc rule intended to simplify the language
and its implementations.
A remote-identifier of the form
simple-text-expression.attribute-identifier
identifies an attribute of the text variable identified by evaluating
the simple-text-expression, provided that the attribute-identifier is

one of the procedure-identifiers listed on page 119.

Note: Even if ¢the -expression references the value notext, the
attribute access is legal (in contrast to object-expressions).

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 51
EXPRESSIONS ‘

Example:

Let P1 and P2 be variables declared and initialized as in example 2 on
page 37. Then the value of the expression

P1.plus (P2)

is a new "point" object which represents the vector sum of P1 and P2.
The value of the expression

P1 gua polar.plus (P2)

is a new "polar® object representing the same vector sum.

4.2 FUNCTION DESIGNATORS

function-designator
= procedure-identifier-1 [actual-parameter-part)

procedure-identifier-1
= identifier-t

actual-parameter-part
= "(" actual-parameter-list *)" .

actual-parameter-list
= actual-parameter (*

," actual-parameter *) A

actual-parameter
= expression
! array-identifier-1
! switch-identifier
! procedure-identifier-1

A function-designator defines a value which results through the
application of a given set of rules defined by a procedure declaration
(see page 29) to a fixed set of actual-parameters. The rules governing
specification of actual-parameters are given on page 31.

Note: Not every procedure declaration defines rules for determining
the value of a function-designator (cf. page 30).

Examples:
sin(a-b)
j{v+s,n)
r

ss(s-5, !Temperature; T, !Pressure; P)
compile (*(:=)", !Stack; q)

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

52 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

4.3 BOOLEAN EXPRESSIONS

Boolean-primary
= logical-value
! variable
! function-designator
! relation
! "(" Boolean-expression ")*

Boolean-secondary
= { "not")} Boolean-primary

Boolean-factor
= Boolean-secondary (* *"and®* Boolean-secondary *)

Boolean-term
= Boolean-factor (* “or

Boolean-factor *®)

implication
= Boolean~term (* *imp

Boolean term *)

equivalence
= implication (* “eqv

" implication *)
Boolean-tertiary
= equivalence (* "and” "then" equivalence *)

simple-Boolean
= Boolean-tertiary (* "or”" “else” Boolean-tertiary *)

Boolean-expression
= simple-Boolean
' if-clause simple-Boolean else Boolean-expression

A Boolean-expression is of type Boolean. It is a rule for computing a
logical-value. Except for the operators and then and or else (see page
56), the semantics are entirely analogous to those given for
arithmetic-expressions.

Variables and function-designators entered as Boolean-expressions must
be declared Boglean.

Examples:
x = -2
I>v or z<q

a+b> ~5 apd z-d>q*%2

P and not 9 or xOy

t.more and then t.getchar
== none QL else x.aX0

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 53
EXPRESSIONS

if <1 then s>w else h(=sc
if (if (if a then b else c) then d else £) then g else h<k

4.3.1 RELATIONS

relation
= arithmetic-relation
! character-relation
! text-~value-relation
! object-relation
! object-reference-relation
! text-reference-relation

value-relational-operator
= (! =t = 1 H= 1 5> 1

reference-comparator

= == | =/=

The value-relational operators have the conventional meanings. Their
specific interpretation is described below in connection with the
respective types. The reference comparators have the same priority
level as the relational operators.

4.3.1.1 ARITHMETIC RELATIONS

arithmetic-relation
= simple-arithmetic-expression
value-relational-operator simple-arithmetic-expression

The relational operators <, <=, =, »>=, > and (> have their
conventional meaning (less than, less than or equal to, equal to,
greater than or equal ¢to, greater than, not equal to). Arithmetic-
relations take on the value frue whenever the corresponding relation
is satisfied for the expressions involved, otherwise false. If the
involved expressions are of different precision types (e.g. long real
and real respectively), conversion to the type with the maximum value
range is assumed.

4.3.1.2 CHARACTER RELATIONS

character-relation
= simple-character-expression
value-relational-operator simple-character-expression

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

54 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

Character values may be compared for equality and inequality and
ranked with respect to the (implementation defined) collating
sequence. A relation

x rel y,

where x and vy are character values, and rel is any value relational
operator having the same truth value as the relation

rank{x) rel rank(y).

4.3.1.3 TEXT VALUE RELATIONS

text-value-relation
= simple-text-expression
value-relational-operator simple-text-expression

Two text values are equal if they are both empty, or if they are both
instances of the same character sequence. Otherwise they are unequal.

A text value T ranks lower than a text value U if and only if they are
unequal and one of the following conditions is fulfilled:

1} T is empty.
2) U is equal to T followed by one or more characters.

3) When comparing T and U from left to right the first nonmatching
character in T ranks lower than the corresponding character in U.

4.3.1.4 0BJECT RELATIONS

object-relation
= simple-object-expression “is” class-identifier
! simple-object-expression "in" class-identifier

The operators is and in may be used to test the class membership of an
object.

The relation "X is C* has the value true if X refers to an obhject
belonging to the class C, otherwise the value is false.

The relation *X in C* has the value true if X refers to an object
belonging to a class C or a class inner to C, otherwise the value is

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 55
EXPRESSIONS

4.3.1.5 0BIECT REFERENCE RELATIONS

object-reference-relation
= gimple-object-expression
reference-comparator simple-object-expression

The reference comparators “==" and °"=/=" may be used for the
comparison of references (as distinct from the corresponding
referenced values). Two object references X and Y are said to be
“identical”® if they refer to the same object or if they both are none.
In those cases the relation "X==Y" has the value trye. Otherwise the
value is false.

The relation "X=/=Y" is the negation of "X==Y".

4.3.1.8 TEXT REFERENCE RELATIONS

text-reference-relation
= simple-text-expression
reference-comparator simple-text-expression

Let T and U be text variables. The relation "T==U" is equivalent to

T.0BJ == U.0BJ
and T.START = U.START
and T.LENGTH = U.LENGTH

Note: The POS components are ignored. Also observe that the relations
"*T=/=0* and °T=U" may both have the value trye. (T and U
reference different text frames which contain the same text
value.)

The following relations are all true:
T = notext eqv T == notext

*® == notext
“ABC" =/= "ABC" (different occurrences)

The following example further illustrates this:
c¢lass C; begin text T; T:- "ABC® end;

The relation "pnew C.T == pew C.T" is here true.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

56 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

4.3.2 THE LOGICAL OPERATORS

The meaning of the logical operators not, and, or, imp, and gqv is
given by the following function table:

b1 false false tiye frue
b2 false true false true
net b1 true true false false
b1 and b2 false false falge true
b1 ox b2 false true tIye true
b1 imp b2 true true false true
b1 egqv b2 true false false true

The operation Boolean-tertiary and them equivalence denotes
“conditional and®". If the value of the Boolean-tertiary is false the
operation will vyield the result false, otherwise it will yield the
result of evaluating the equivalence.

The operation simple-Boolean or else Boolean-tertiary denotes
“conditional or". If the wvalue of the simple-Boolean is true the
operator will yield the result truye, otherwise it will vyield the
result of evaluating the Boolean-tertiary.

If A and B are of type Boolean then the value of A and then B 1s given
by the textual substitution of the Boolean-expression (if A then B
else false). Similarly, the operation A or else B is defined by the
substitution of the expression (if A then true else B).

Note: In both cases these definitions imply that the redundant
evaluation of the second operand is suppressed when the
evaluation result is evident from the value of the first operand
alone.

4.3.3 PRECEDENCE OF OPERATORS

The sequence of operations within one expression is generally from
left to right, with the following additional rules:

The following rules of precedence hold:

first: arithmetic-expressions according to pages 57 to 61
second: ¢ (= = D>= > () == =f= is jin

third: not

fourth: and

fifth: or

sixth: im

seventh: eqv

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

i
ND-500 SIMULA REFERENCE MANUAL 57
EXPRESSIONS

eight: and then
nine: or else

The use of parentheses will be interpreted in the sense given on page
61,

4.4 ARITHMETIC EXPRESSIONS

arithmetic-expression
= simple-arithmetic-expression
! if-clause simple-arithmetic-expression
‘else® arithmetic-expression

if-clause
= "if" Boolean-expression “"then®

simple-arithmetic-expression
= (adding-operator)} term (* adding-operator term *)

term
= factor (* multiplying-operator factor *)
factor
= primary (* "**" oprimary *)
primary
unsigned-number

! wvariable

! function-designator

! *(" arithmetic-expression)"
multiplying-operator

= agae | -/- | -//-

adding-operator

= oy 1 w_nu

An arithmetic-expression is a rule for computing a numerical value. In
the case of simple-arithmetic-expressions this value is obtained by
executing the indicated arithmetic operations on the actual numerical
values of the primaries of the expression, as explained in detail on
page 59 below. The actual numerical value of a primary is obvious in
the case of numbers. For variables it is the current value (assigned
last in the dynamic sense), and for function-designators it is the
value arising from the computing rules defining the procedure, when
applied to the current values of the procedure parameters given in the
expression. Finally, for arithmetic-expressions enclosed in
parentheses, the value must through a recursive analysis be expressed
in terms of the values of primaries of the other three kinds.

In the more general arithmetic-expressions, which include if-clauses,
one out of several simple-arithmetic-expressions is selected on the
basis of the actual values of the Boolean-expressions (see page 56).
This selection is made as follows: The Boolean-expressions of the if-

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

58 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

clauses are evaluated one by one in sequence from left to right until
one having the value grue is €found. The value of the arithmetic-
expression is then the value of the first arithmetic-expression
following this Boolean (the longest arithmetic-expression found in
this position is understood). If none of the Boolean-expressions have
the value true, then the value of the arithmetic-expression 1is the
value of the expression following the final else.

In evaluating an arithmetic-expression, it is understood that all the
primaries within that expression are evaluated, except those within
any arithmetic-expression that is governed by an if-clause but not
selected by it. In the special case where an exit i3 made from a
function-designator by means of a goto-statement, the evaluation of
the expression is abandoned when the goto-statement is executed. The
order of evaluation of primaries within an arithmetic-expression is
strictly left to right.

Examples:

Primaries:

7.394_6044&-8

sum

w(i + 2,8)

cos(y + 2*3.141_592_653_589_793_324&&0)
(a - 3/y + vur*g)

Factors:

omega
sum ** cos{ y + 2*3)
7.394&-8 ** w(i + 2,8) ** (a - 3/y + vu ** §)

Terms:

u
omega * sum ** cos(y+z*3)/7.394&-8 ** w(i+2,8) ** (a-3/y + vur%8)

Simple arithmetic-expression:
u - yu + omegafsum**cos(y+z*3)/7.394&-8 ** w(i+2,8)%*(a-3/y+vur*8)
Arithmetic expressions:

wtu - q(s+cu)**2
. 1f q>0 then s+3*q//a else 2's+li*q
1f a<0 then u+v else if atb>17 then u/v
else if k »>= y then v/u else O
a * sin(omegar’t)
0.57&12 * a(n*(n-1}//2 ,0)
(atarctan(y)+z) ** (7+Q)
if 9 then n-1 else n
if a<0 then a/b else if a<>0 then b/a else :z

ND-60.208.1 EN

Scar\ned by Jnnny Qddene for éinfran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 59
EXPRESSIONS

4.4.1 GPERATORS AND TYPES

Apart from the Boolean- expressions of if-clauses, the constituents of
simple-arithmetic- exptessxons must be of types (long) real or (short)
inteqer. The meaning of the basic operators and the types of the
expressions to which they lead are given by the following rules:

The operators +, -, and * have their conventional meanings (addition,
subtraction, and multiplication). The type of the expression will be
long rea)l if any of the operands is of type long real. Otherwise, if
any operand is of type real, the result will be of type real.
Otherwise the result is of type integer.

The procedure "abs® (see page 154) always returns the same type as its
argument, i.e. (long) real or (short) integer.

The operators °/* and "//" both denote division. The operations will
constitute a run time error if the dividend has the value zero. The
type real division (/), is to be understood as a multiplication of the
term by the reciprocal of the factor with due regard to the rules of
precedence. Thus for example

a/b*7/(p-q)*v/s means { ((a/D)*7)/(p-q)) * v)/s.

The operator / is defined for all combinations of type real and type
inteqer, and will always yield results of type real. The operator //
is defined only for operands of type integer, and will yield a result
of type inteqer. If a and b are of type inteqer, then the value of
a//b is given by the function:

integer procedure DIV(a, b);
(short) lnteger a, b;
if b=0 then

error(”...

!div by zero;)

0; r:= abs(a);
for r:=r - abs(b) while r>=0 do q:= q + 1;
DIV:= if a<0 eqvy b>0 then -q else gq
end DIV

The operation factort*t*primary denotes exponentiation, where the factor
1s the base and the primary is the exponent. Thus for example

2tttk means (2**n)t*k
while the alternative evaluation order is achieved by 2**(n*tm).

If r is of type real and x is of any arithmetic type, then the value
of x**r is given by the function:

ND-60.208.1 EN

— ScannedbyJonny Oddene for Sintran Data©2010_

60 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

¢(real type> procedure expr(x,r); ! type returned equal
to that of r;
real x; (arithmetic type> r;
if x>0.0 then
expr:= exp(r*in(x))
lse if x=0.0 and r>0.0 then
expr:= = 0.0

K

®

1s

4]
[

error(®...° !expr undefined;)

If i and j are both of type integer, then the value of i**j is given
by the function:
integer procedure expi(i,j);
(integer type> i,3J;
if j<0 or i=0 and j=0 then
error(*..." !expi undefined;)
else

beqgin integer k,result;
result:= 1;
gg; k:= 1 step 1 until j do
result:= result*i;
expi:= result
end expi

If n is of type integex and x is of type real, then the value of x**n
is given by the function:
(real type> procedure expn(x, n); ! returned type same
as type of x; .
<(real type> x; <integer type> n;
if n=0 and x=0.0 then
error("..." !expn undefined;)
else
begin <(real type> result; <integer type) i;
result:= 1.0;
for i:= abs(n) step -1 until t do
result := result®x;
expn:= if n<0 then 1.0/result else result
end expn

It is understood that the finite deviations obtained by using the
exponentiation operator may be different from those obtained using the

procedures "expr®” and "expn®.

4.4.2 TYPE OF A CONDITIONAL EXPRESSION
The type of an arithmetic-expression of the form
if B then SAE else AE
does not depend upon the value of B. The expression is of type (long)
real if either SAE or AE is (long) real. Otherwise, if both SAE and AE

are of type short integer, the type of the expression will be gshort
inteqger, else the type will be jpteger.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 61
EXPRESSIONS

4.4.3 OPERATOR PRECEDENCE

The sequence of operations within one expression 1is generally from
left to right, with the following additional rules:

The following rules of precedence hold:

first: b
second: LAY
third: + -

The expression between a left parenthesis and the matching right
parenthesis is evaluated by itself and this value is wused 1in
subsequent calculations. Consequently the desired order of execution
of operations within an expression can always be arranged by
appropriate positioning of parentheses.

4.4.4 ARITHMETICS OF REAL QUANTITIES

Numbers and variables of type real must be interpreted in the sense of
numerical analysis, i.e. as entities defined inherently with only a
finite accuracy. Similarly, the possibility of the occurrence of a
finite deviation from the mathematically defined result in any
arithmetic-expression is explicitly understood. No exact arithmetic
will be specified, however, and it is indeed understood that different
implementations may evaluate arithmetic-expressions differently. The
control of the possible consequences of such differences must be
carried out by the methods of numerical analysis. This control must be
considered a part of the process to be described, and will therefore
be expressed in terms of the language itself.

4.5 CHARACTER EXPRESSIONS

simple-character-expression
character-constant
variable
function-designator
"(" character-expression *)°
character-expression
= simple-character-expression
! if-clause simple-character-expression
*else® character-expression

A character-expression is of type character. It is a rule for
obtaining a character value.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

62 ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

4.6 TEXT EXPRESSIONS

simple-text-expression
= ‘“notext”
! string
! variable
! function-designator
! *{" text-expression ")"

text-expression
= simple-text-expression
! jif-clause simple-text-expression ‘else" text-expression

A text-expression is of type text. It is a rule for obtaining an
identification of a text variable.

The result of evaluating

- notext, or an empty string, identifies an anonymous text
variable whose contents is defined by the second condition
set of page 49..

-~ a non-empty string identifies an anonymous text variable
which references a constant text frame whose value is the
internal representation of the external character sequence.
This frame 1is always a main frame. The POS component of the
anonymous variable equals 1.

- a text variable identifies the variable itself.

- a text function-designator identifies an anonymous text
variable which contains a copy of the final contents of the
text variable associated with the procedure-identifier during
the execution of the procedure in question.

- a text-expression enclosed in parentheses identifies an
anonymous text variable which contains a copy of the contents
of the text variable identified when evaluating the same
expression without parentheses.

- a conditional text-expression identifies an anonymous text
variable which contains a copy of the contents of the text
variable, identified by the branch which was selected for
evaluation.

For further information on the text concept, see chapter 7.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SI
EXPRESSIO

MULA REFERENCE MANUAL 63
NS

4.7 0BJECT EXPRESSIONS

object-expression

1

simpl

objec

local

quali

. An objec
obtaining
reference

simple-object-expression
if-clause simple-object-expression “else* object-
expression

e-object~expression
“none”
variable
function-designator
object~generator
local-object
qualified-object
(object-expression °*)°

t-generator
"new" class-identifier actual-parameter-part

-object
this class-identifier

fied-object
simple~object-expression

qua' class-identifier

t-expression is of type ref (qualification). It is a rule for
a reference to an object. The value of the expression is the
d object or none. The scope of qualification conforms to the

same scope rules as other identifiers.

4.7.1 QUALIFICATION

The gquali
rules:

1)

fication of an object-expression is defined by the following

The expression none is qualified by a fictitious class which
is inner to all declared classes.

2) A variable or function-designator is qualified as stated 1in

3)

4)

5)

Sca

the declaration (or specification, see below) of the
variable, array, or procedure in question.

An object generator, local-object, or qualified-object 1is
qualified by the class of the ideantifier following the symbol

new, this, or gua respectively.

A conditional object-expression is qualified by the innermost
class which includes the qualifications of both alternatives.
If there is no such class, the expression is illegal.

Any formal parameter of object reference type is qualified

according to its specification regardless of the
qualification of the corresponding actual-parameter.

ND-60.208.1 EN

nned by Jonny Oddene for Sintran Data © 2010

64) ND-500 SIMULA REFERENCE MANUAL
EXPRESSIONS

6) The qualification of a function-designator whose procedure-
identifier is that of a virtual quantity, depends on the
access level (cf. page 41). The qualification is that of the
matching declaration, if any, occurring at the innermost
prefix level equal or outer to the access level, or if no
such match exists, it is that of the virtual specification.

4.7.2 OBJECT GENERATOR

The value of an object generator is the object generated as the result
of its evaluation (see page 83).

4.7.3 LOCAL 0BJECTS

A local-object *"this C" is a meaningful expression provided that the
expression is used within the scope of the class-identifier C and
within

1) the class body of C or that of any subclass of C, or

2) a connection block whose block qualification is € or a
subclass of C (see pages 32 through 42}.

The value of a local-object in a given context is the object which is,
or is connected by, the smallest textually enclosing block instance in
which the local-object is a meaningful expression. If there is no such
block the local-object is illegal (in the given context). For an
instance of a procedure or a class body, °textually enclosing® means
containing its declaration.

4.7.4 INSTANTANEOUS QUALIFICATION

Let X represent any simple reference-expression, and let C and D be
class-identifiers. such that D is the qualification of X. The
qualified-object °*X qua C" is then a legal object-expression, provided
that C is outer to or equal to D or is a subclass of D. Otherwise,
i.e. if C and D belong to disjoint prefix sequences, the qualified-
object is illeqa}.

If the value of X is none or is an object belonging to a class outer
to C, the evaluation of X gqua C constitutes a run time error.
Otherwise, the value of X gua C is that of X. The use of instantaneous
qualification enables one to restrict or extend the range of
attributes of a concatenated class object accessible through
inspection or remote accessing (cf. pages 34 et seq and 41).

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 65
EXPRESSIONS

4.8 DESIGNATIONAL EXPRESSIONS

designational-expression
= simple-designational-expression
! if-clause simple-designational-expression
"else" designational-expression

simple-designational-expression
= label
! switch-designator
! *(" designational-expression)"

switch-designator
= switch-identifier "(" subscript-expression)"

switch-identifier
= identifier

label
= identifier

A designational-expression is a rule for obtaining a label of a
statement. The principle of the evaluation is entirely analogous to
that of arithmetic-expressions. In the general case the Boolean-
expressions of the if-clauses will select a simple-designational-
expression. If this is a label the desired result is already found. A
switch-designator refers to the corresponding switch declaration and,
by the actual numerical value of its subscript-expression, selects one
of the designational-expressions listed in the switch declaration, by
counting these from left to right. Since the designational-expression
thus selected may again be a switch-designator, this evaluation is
obviously a recursive process.

The evaluation of the subscript-expression is analogous to that of
subscripted-variables. The value of a switch-designator is defined

only 1if the subscript-expression assumes one of the values 1, 2, ...,
n, where n is the number of entries in the switch list.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

66

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

STATEMENTS .

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

67

68

.
ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND~500 SIMULA REFERENCE MANUAL \ 69
STATEMENTS

5 STATEMENTS

statement
= unconditional-statement
! conditional-statement
! for-statement
! connection-statement
! while-statement

unconditional-statement
= basic-statement
! compound-statement
! block

basic-statement
= (* label ":" *) unlabelled-basic-statement

unlabelled-basic-statement
= assignment-statement
! goto-statement
! dummy-statement
! procedure-statement
! activation-statement
! object-generator

The units of operation within the language are called statements. They
will normally be executed consecutively as written. The sequence of
operations may be broken by goto-statements, which define their
successor explicitly, or by sequencing procedure calls, which define
their successor implicitly. It may be changed by conditional-
statements, which may cause certain statements to be skipped or
repeated. It may be lengthened by for-statements and while-statements
which cause certain statements to be repeated.

In order to make it possible to define a specific dynamic succession,
statements may be provided with labels.

Since sequences of statements may be grouped together into compound-
statements and blocks, the definition of statements must necessarily
be recursive. Also since declarations, described in chapter 3, enter
fundamentally into the syntactic structure, the syntactic definition
of statements must suppose declarations to be already defined.

5.1 ASSIGNMENT STATEMENTS

assignment-statement
= value-assignment
! reference-assignment

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

70 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

value-assignment
= value-left-part ":=" value-right-part

value-left-part
= destination
! simple-text-expression

value-right-part
= value-expression
! text-expression
! value-assignaent

destination
= variable
! procedure-identifier

reference-assignment
= reference-left-part “:-" reference-right-part

reference-left-part
= destination

reference-right-part
= reference-expression
| reference-assignment

Assignment-statements serve for assigning the value of an expression
to one or several destinations. Assignment to- a procedure-identifier
may only occur within the body of a procedure defining the value of
the function-designator denoted by that identifier. If assignment 1is
made to a subscripted-variable, the values of all the subscripts must
lie within the appropriate subscript bounds, otherwise a run-time
error will result.

The operator “:=" (read: “"becomes®") indicates the assignment of a
value to the value type variable or value type procedure-identifier
which 1is the left part of the value-assignment or the assignment of a
text-value to the text frame referenced by the left part.

The operator ":-" (read: "denotes”) indicates the assignment of a
reference to the reference type variable or reference type procedure-
identifier which is the left part of the reference-assignment.

A procedure-identifier in this context designates a memory device
local to the procedure instance. This memory device is initialized
upon procedure entry according to page 42.

The value or reference assigned is a suitably transformed
representation of the one obtained by evaluating the right part of the
assignment. If the right part is itself an assignment, the value or
reference obtained 1is a copy of its constituent left part after that
assignment operation has been completed.

The type associated with all destinations of a left part list must be
the same unless all destinations are of arithmetic types in which case

also the expression must be of arithmetic type. Otherwise the types of
all destinations must coincide with that of the expression.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 71
STATEMENTS

If the type associated with a destination is Boolean, the expression
must likewise be Boolean. If the type is character, the expression
must likewise be character.

For the description of the text-value-assignment, see page 72. There
is no value-assignment operation for objects.

The type of the value or reference obtained by evaluating the right
part must coincide with the type of the left part, with the exceptions
mentioned in the following sections.

If the left part of an assignment is a formal name parameter, and the
type of the corresponding actual parameter does not coincide with that
of the formal specification, then the assignment operation is carried
out in two steps.

1) An assignment is made to a fictitious variable of the type
specified for the formal parameter.

2) An assignment-statement is executed whose left part is the
actual parameter and whose right part 1is the fictitious
variable.

The value or reference obtained by evaluating the assignment 1is, in
this case, that of the fictitious variable.

5.1.1 ARITHMETIC ASSIGNMENT

Note that SIMULA is flexible as regards type conversions in multiple
arithmetic assignments - it is not required that all destinations be
of the same type.

If the type of the arithmetic-expression differs from that associated
with the destinations, an appropriate transfer (conversion) function
is understood to be automatically invoked. For transfer from type real
to inteqger the transfer function is understood to yield a result which
is the largest integral quantity not exceeding E + 0.5 in the
mathematical sense (i.e. without rounding error) where E is the value
of the expression. It should be noted that E, being of type real, is
defined with only finite accuracy. The type associated with a
procedure-identifier is given by the declarator which appears as the
first symbol of the corresponding procedure declaration.

The process will in the general case be undexrstood to take place in
three steps as follows:

1) Any subscript expressions occurring in the destinations are
evaluated in sequence from left to right. Any expression

which is, or is part of, the left part of an assignment is
evaluated prior to the evaluation of the right part.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

172 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

2) The expression of the statement is evaluated.

3) The wvalue of the expression is assigned to all the
destinations, with any subscript expressions having values as

evaluated in step 1.

The assignment of an jinteqgqer value to a short integer variable
constitutes a run time error if the value being assigned exceeds the
permissible range of the ghort integer type.

The assignment of a long real value to a real variable may constitute
a run time error in the case where the range of the long real value
exceeds that of the real value. Alternatively, a precision loss may
occur at such an assignment. However this should not constitute a run
time error.

The assignment of a real value to a lopng real variable may constitute
a run time error in the case where the range of the yeal value exceeds

that of the long real value.
Example:
Consider the statement
X:= i:= Y:= F:= 3.14

where X and Y are real variables, 1 is an integer variable, and F is a
formal parameter called by name and specified real. If the actual
parameter for F is a real variable, then X, i, Y and F are given the
values 3, 3, 3.14 and 3.14 respectively. If the actual parameter 1is an
integer variable, the respective values will be 3, 3, 3.14 and 3.

5.1.2 TEXT VALUE-ASSIGNMENT

Let X be the text variable identified as the result of evaluating the
left part of a text-value-assignment, and let Y denote the text
variable identified by evaluating the corresponding right part: If X
references a constant text frame, or X.LENGTH < Y.LENGTH, then the
assignment constitutes an error.

Otherwise, the value of Y is conceptually extended to the right by
X.LENGTH - Y.LENGTH blank characters, and the resulting text-value 1is
assigned as the new contents of the text frame referenced by X. Note
that if X == potext, the assignment is legal’ if and only 1if Y ==
notext.

Note that the effect of the assignment "X:= Y" is equivalent to that
of "X:= copy(Y)", regardless of whether or not X and Y overlap.

The position indicators of the left and the right parts are ignored
and remain unchanged.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 73
STATEMENTS

If X and Y are non-overlapping texts of the same length then after the
execution of the value-assignment °"X:= Y", the relation "¥=Y" is true.

A text procedure-identifier occurring as a value-left-part within the
procedure-body is interpreted as a text variable. The corresponding
assignment-statement will thus imply an assignment to the local
procedure-identifier.

5.1.3 TEXT REFERENCE ASSIGNMENT

Let X be the text variable which constitutes the left part of a text
reference-assignment, and let Y denote the variable identified by
evaluating the corresponding right part. The effect of the assignment
is defined as the four component assignment:

X.0BJ:- Y.0BJ;
X.START:= Y.START;
X.LENGTH:= Y.LENGTH;
X.P0S:= Y.POS;

5.1.4 OBJECT REFERENCE ASSIGNMENT

Let the left part of an object reference-assignment be qualified by
the class Cl, and let the right part be qualified by Cr. If the right
part is, itself a reference-assignment, Cr is defined as the
qualification of its constituent left part. Let V be the value
obtained by evaluating the right part. The legality and effect of the
reference-assignment depend on relationships between Cr, Cl and V, as
follows:

1) €1 is of the class Cr or outer to Cr: The reference-~
assignment is legal and the assignment operation 1is carried
out.

2) C1 is inner to Cr: The reference-assignment is legal. The
assignment operation is carried out if V is none or 1is an
object belonging to the class Cl or a class inner to Cl. If
not, the execution of the reference-assignment constitutes a
run time error.

3) C1 and Cr satisfy neither of the above relations: The
reference-assignment is illegal.

Similar rules apply to reference-assignments implicit in for-clauses
and the transmission of parameters.

Example:

Let "point" and *polar” be the classes declared in the example of page
37.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

74 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

ref (point) p!, p2; ref (polar) p3;
p1:- new polar (3,4); p2:- new point (5,6);

Now the statement “p3:- pi” assigns to p3 a reference to the “polar®
object which is the value of pi1. The statement "p3:- p2" would cause a
run time error. :

5.2 CONDITIONAL STATEMENTS

conditional-statement
= (* label ":* *) unlabelled-conditional

unlabelled-conditional
= if-statement ["else” statement)
! if-clause for-statement

if-statement
= 1f-clause unconditional-statement
! if-clause connection-statement
! jf-clause while-statement

1f-clause
= "if* Boolean-expression “then”

Conditional statements cause certain statements to be executed or
skipped depending on the running values of specified Boolean-
expressions.

An if-statement is of the form

if b then su

where b is a Boolean-expression and su is an unconditional-statement.
In execution, b is evaluated; if the result is true, su is executed;
if the result is false, su is not executed.

If su contains a label, and a goto-statement leads to the label, then
b is not evaluated, and the computation continues with execution of
the labelled statement.

" Five forms of unlabelled-conditional-statement exist, namely:

-
rn

then Su

then Sfor

Sconn

then Swhile

then Su else S

oY=y
oo oU

(ad

I=

[

=]

==
n [Hn

where Su is an unconditional-statement, Sfor is a for-statement, Sconn
is a connection-statement, Swhile 1is a while-statement and S is a
statement.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 75
STATEMENTS

The second form is equivalent to
if B then beqin Sfor end

The third form is equivalent to

if B then begin Sconn end
The fourth form is equivalent to
if B then begin Swhile end

The last form is equivalent to

if B then begin Su; goto GAMMA end;
S;
GAMMA: end

If S is conditional, and also of this form, a different label must be
used instead of Gamma in following the same rule.

Note: The effect of a goto-statement leading 1into a conditional-
statement follows directly from the above explanation of the
execution of a conditional-statement.

Examples:

if x>0 then n:=n+1
if v>u then v: q:=n+m else go to r
if s<O or p < q then
aa: begin if q<v then
a:= v/s
else y:=2%a
end
else if v>s then a:=v-q
else if v>s-%1 then goto s

5.3 WHILE STATEMENT

while-statement
= {(* label ":" *) “"while" Boolean-expression "do"
statement

A while-statement causes a statement to be executed zero or more
times.

The Boolean-expression is evaluated. When true, the statement
following do is executed and control returns to the beginning of the
while-statement for a new test of the Boolean-expression.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

76 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

When the expression is false, control passes to after the while-
statement.

5.4 FOR STATEMENTS

for-statement
= (* label ":" *) for-clause controlled-statement

for-clause
= “for* controlled-variable for-right-part "do”

controlled-statement
= statement

controlled-variable
= simple-variable

for-right-part
= “:=" value-for-list
! ":-" reference-for-list

value-for-list
= value-for-list-element (* "," value-for-list-element *)

reference-for-list
= reference-for-list-element
(* *," reference-for-list-element %)

value-for-list element
= value-expression ("while” Boolean-expression)
! text-value
! arithmetic-expression
"step® arithmetic-expression
"until® arithmetic-expression

reference-for-list element
= reference-expression (“"while" Boolean-expression)

A for-clause causes the controlled-statement to be executed repeatedly
zero or more times. Each execution of the controlled-statement is
preceded by an assignment to the controlled-variable and a test to
determine whether this particular for-list element is exhausted.

Assignments may change the value of the controlled-variable during
execution of the controlled-statement.

Upon exit from the for-statement, the controlled-variable will have
the value given to it by the last (explicit or implicit) assignment
operation.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 17
STATEMENTS

5.4.1 FOR LIST ELEMENTS

The for 1list elements are considered in the order in which they are
written. When one for list element is exhausted, control proceeds to
the next, until the last for 1list element in the list has been
exhausted. Execution then continues after the controlled-statement.

The effect of each type of for list element is defined below using the
following notation:

controlled-variable
value~-expression
reference-expression
arithmetic-expression
Boolean-expression
controlled-statement

nwro<n

The effect of the occurrence of expressions as for list elements may
be established by textual replacement in the definitions.

ALFA, BETA and DELTA are different identifiers which are not used

elsewhere in the program. DELTA identifies a nonlocal simple-variable
of the same type as A2.

next for list element

2. A1 step A2 until A3

C = Al
DELTA := A2;
i DELTA*(C-A3) > O do bedqin
S;
DELTA := A2;
Cc := C + DELTA;
end;

next for list element

ALFA C:=V;
if B then begin
S;
qoto ALFA; end;

next for list element

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

78 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

====

C:- R;
S;
next for list element

S;
qoto ALFA; end;
next for list element

5.4.2 THE CONTROLLED YARIABLE

The semantics of this section are valid when the controlled-variable
is a simple-variable which is neither a formal parameter called by
name, nor a procedure-~identifier.

To be wvalid, all for 1list elements in a for-statement (defined by
textual substitution, see page 77) must be semantically and
syntactically valid.

In particular, each implied reference-assignment in examples 4 and 5
of page 77 is subject to the rules of page 73, and each text-value-
assignment in examples 1 and 3 of page 77 is subject to the rules of

page 72.

5.4.3 THE CONTROLLED STATEMENT
The controlled-statement always acts as if it were a block. Hence,

labels on or defined within the controlled-statement may not be
accessed from without the controlled-statement.

5.5 GOTO STATEMENTS

goto-statement
= (®"goto® ! "go® "to") designational-expression

A goto-statement interrupts the normal sequence of operations, by
defining its successor explicitly by the value of a designational-

expression. Thus the next statement to be executed will be the one
having this value as its label.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 19
STATEMENTS

Since labels are inherently local, no goto-statement can lead from
outside into a block. A goto-statement may, however, lead from outside
into a compound-statement.

If the designational-expression is a switch-designator whose value is
undefined, the execution of the goto-statement constitutes a run-time
error.

See also page 149,
Examples:

goto L8
goto exit(n+1)
49 to Town{if y<O then N else N+1)
goto if Ab<c then L17
else q(if w<0 then 2 else n)

5.6 PROCEDURE STATEMENT

procedure-statement
= procedure~identifier-1 (actual-parameter-part)

A procedure-statement serves to invoke (call for) the execution of a
procedure-body. Where the procedure-body-is a statement written in
SIMULA, the effect of this execution is equivalent to performing the
following operations (see through page 82 below) on the program at the
time of execution of the procedure-statement.

5.6.1 ACTUAL-FORMAL CORRESPONDENCE

The correspondence between the actual parameters of the procedure-
statement and the formal parameters of the procedure-heading is
established as follows. The actual parameter list of the procedure-
statement must have the same number of entries as the formal parameter
list of the procedure declaration heading. The correspondence is
obtained by taking the entries of these two lists in the same order.

The type correspondence of formal and actual parameters is governed by
the following rules:

1) Formal parameters of arithmetic type which are not arrays or
procedures can have actual parameters of any arithmetic type.
The conversion follows ¢the assignment-statement rules for
value type parameters and page 60 for name parameters.

2) A proper procedure can have a type procedure as an actual
parameter.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

80 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

3) Exact type correspondence is required for array parameters
irrespective of transmission mode.

5.6.2 VALUE ASSIGNMENT (CALL BY VALUE)

A formal parameter called by value designates initially a local copy
of the value (or array) obtained by evaluating the corresponding
actual parameter.

All formal parameters quoted in the value part of the procedure-
heading as well as value type parameters not quoted in the name part
are assigned the values of the corresponding actual parameters, these
assignments being considered as being performed explicitly before
entering the procedure-body. The effect is as though an additional
block embracing the procedure-body were created in which these
assignments were made to variables local ¢to ¢this fictitious block,
with types as given in the corresponding specifications. As a
consequence, variables called by value are to be considered as non-
local to the body of the procedure, but local to the fictitious block.

A text parameter called by value is a local variable initialized by
the statement

FP:~ copy(AP)
where FP is the formal parameter, and AP is the variable identified by
evaluating the actual parameter. (":-" 1is defined on page 70, and
“copy" on page 122).

Value specification is redundant for a parameter of type value.

There is no call by value option for object reference parameters and
reference type array parameters.

5.6.3 DEFAULT REPLACEMENT (CALL BY REFERENCE)

Any formal parameter which is not of type value, and which is not
quoted in the mode part, is said to be called by reference.

A formal parameter called by reference designates initially a local
copy of the reference obtained by evaluating the corresponding actual
parameter. The evaluation takes place at the time of procedure entry.

A reference type formal parameter is a local variable initialized by a
reference-assignment

FP:- AP
where FP is the formal parameter and AP is the reference obtained by
evaluating the actual parameter. The reference-assignment 1is subject
to the rules on page 73. Since in this case the formal parameter is a
reference type variable, its contents may be changed by reference-
assignments within the procedure-body.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MAﬁUAL 81
STATEMENTS

Although array-, procedure-, label- and switch-identifiers do not
designate references to values, there 1is a strong analogy between
references in the strict sense and references to entities such as
arrays, procedures (i.e. procedure declarations), program points and
switches. Therefore a call by reference mechanism is defined in these
cases.

An array-, procedure-, label-, or switch-parameter called by reference
cannot be changed from within the procedure or class-body; it will
thus reference the same entity throughout its scope. However, the
contents of an array called by reference may well be changed through
appropriate assignments to its elements.

For an array parameter called by reference, the type associated with
the actual parameter must coincide with that of the formal
specification. For a procedure parameter called by reference, the type
associated with the actual parameter must coincide with or be
subordinate to that of the formal specification.

5.6.4 NAME REPLACEMENT (CALL 8Y NAME)

Call by name is an optional transmission mode available for parameters
to procedures. [t represents a textual replacement.

Any formal parameter quoted in the name part is replaced, throughout
the procedure-body, by the corresponding actual parameter, after
enclosing this latter in parentheses if it is an expression but not a
variable. Possible conflicts between identifiers inserted through this
process and other identifiers already present within the procedure-
body will be avoided by suitable systematic changes of the formal or
local identifiers involved.

If the actual and formal parameters are of different arithmetic types,
then the appropriate type conversion must take place, irrespective of
the context of use of the parameter.

For an expression within a procedure-body which is

a) a formal parameter called by name,

b) a subscripted variable whose array identifier is a formal
parameter called by name, or

c) a function designator whose procedure-identifier is a formal
parameter called by name,

the following rules apply:

1) Its type is that prescribed by the corresponding formal
specification.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

82 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

2) If the type of the actual parameter does not coincide with
that of the formal specification, then an evaluation of the
expression is followed by an assignment of the value or
reference obtained to a fictitious variable of the latter
type. This assignment is subject to the rules of page 69. The
value or reference obtained by the evaluation is the contents
of the fictitious variable.

Also, for a formal text parameter called by name, the following rule
applies:

If the actual parameter is a string, then all occurrences of
the formal parameter evaluate to the same text frame (see
page 23).

Pages 69 through 74 define the meaning of an assignment to a variable
which is a formal parameter called by name, or 1is a subscripted
variable whose. array identifier is a formal parameter called by name,
if the type of the actual parameter does not coincide with that of the
formal specification.

Assignment to a procedure-identifier which is a formal parameter is
illegal, regardless of its transmission mode.

Notice that each dynamic occurrence of a formal parameter called by
name, regardless of its kind, may invoke the execution of a non-
trivial expression, e.g. 1if its actual parameter is a remote
identifier.

5.5.5 BOOY REPLACEMENT AND EXECUTION

Following parameter replacement the procedure-body, modified as above,
is inserted in place of the procedure-statement and executed. If the
procedure is called from a place outside the scope of any non-local
quantity of the procedure-body the conflicts between the identifiers
inserted through this process of body replacement and the identifiers
whose declarations are valid at the place of the procedure-statement
or function designator will be avoided through suitable systematic
changes of the latter identifiers.

5.5.6 RESTRICTIONS

For a procedure-statement to be defined it 1is necessary that the
operations on the procedure-body defined in pages 79 through 82 lead
to a correct SIMULA statement.

This imposes the restriction on any procedure-statement that the kind
and type of each actual parameter be compatible with the kind and type
of the corresponding formal parameter. Some important particular cases
of this general rule, and some additional restrictions, are the
following.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

i
ND-500 SIMULA REFERENCE MANUAL 83
STATEMENTS

A formal parameter which occurs as a destination within the procedure-
body and which is not called by value can only correspond to an actual
parameter which is a variable (special case of expression).

A formal parameter which is used within the procedure-body as an array
identifier can only correspond to an actual parameter which identifies
an array of the same dimensions. In addition, if the formal parameter
“is called by value, the local array created during the call will have
the same subscript bounds as the actual array. Similarly the number,
kind and type of any parameters of a formal procedure parameter must
be compatible with those of the actual parameter.

5.7 OBJECT GENERATOR STATEMENT

object-generator
= "new" class-identifier (actual-parameter-part)

An object-generator invokes the generation and execution of an object
belonging to the identified class. The object is a new instance of the
corresponding (concatenated) class-body. The evaluation of an object-
generator consists of the following actions:

1) The object is generated and the actual parameters, if any, of
the object-generator are evaluated. The parameter values and/or
references are transmitted.

2) Control enters the ohbject through its initial begin whereby it
becomes operating in the "attached" state (see chapter 9). The
evaluation of the object-generator is completed:
case a: whenever the basic procedure *"detach" is executed “on

behalf of" the generated object (see page 139 et seq),
or
case b: upon exit through the final end of the object .

The state of the object after the evaluation is either "detached®
(case a) or "terminated" (case b).

5.7.1 PARAMETER REPLACEMENT

In general the correspondence between actual and formal parameters 1is
the same for classes as for procedures.

The call by name option is not available for classes. Procedure, label
and switch parameters cannot be transferred to classes.

For further information on parameter transmission modes, see pages 31
and 40.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

84 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

5.8 CONNECTION STATEMENT

connection-statement .
= (* label ":" *) “inspect” object-expression
connection-part (otherwise-clause)
! (* label ":* *) “"inspect” object-expression
“do" connection-block-2
{ otherwise-clause)

connection-part
= when-clause (* when-clause *)

when-clause
= “*when” class-identifier "do®" connection-block-1

otherwise-clause
= "otherwise” statement

connection-block-1
= statement

connection-block-2
= statement

A connection block may itself be or contain a connection-statement.
This “inner® connection-statement will then be the largest possible
connection-statement. Consider the following:

inspect A when Al do

inspect B when B1 do St *
when B2 do S2 *
otherwise S3; *

The inner connection-statement includes the lines that are marked with
an asterisk (*).

The purpose of the connection mechanism is to provide implicit
definitions to items ! and 2 on page 41 for certain attribute
identifications within connection-blocks.

The execution of a connection-statement may be deséribed as follows:

1) The object-expression of the connection-statement is
evaluated. Let its value be X.

2) If when-clauses are present they are considered one after
another. If X is an object belonging to a class equal or
inner to the one identified by a when-clause, the connection-
block-1 of this when-clause is executed, and subsequent when-
clauses are skipped. Otherwise the when-clause is skipped.

ND-60.208.1 EN

nned by Inpny QOddene for Sintran Nata © 2010

o
cartT Voo

ND-500 SIMULA REFERENCE MANUAL 85
STATEMENTS

3) If a connection-block-2 is present it is executed, except if
X is none, in which case the connection-block is skipped.

4) The statement of an otherwise-clause is executed if X is
nope, or if X is an object not belonging to a class included
in the one identified by any when-clause. Otherwise it is
skipped.

A statement which is a connection-block-1 or a connection-block-2 acts
as a block, whether it takes the form of a block or not. It further
acts as if enclosed in a second fictitious block, called a "connection
block®. During the execution of a connection block the object X is
said to be “connected". A connection block has an associated "block
qualification®, which is the preceding class-identifier for a
connection-block-1 and the qualification of the preceding object-
expression for a connection-block-2.

Let the block qualification of a given connection block be C and let A
be an attribute identifier, which is not a label or switch identifier,
defined at any prefix level of C. Then any uncommitted occurrence of A
within the connection block is given the local significance of being
an attribute identification. Its item 1 is the connected object, its
item 2 is the block qualification C. It follows that a connection
block acts as if its local quantities are those attributes (excluding
labels and switches) of the connected object which are defined at
prefix levels outer to and including that of C. Name conflicts between
attributes defined at different prefix levels of C are resolved by
selecting the one defined at the innermost prefix level (see page 41).

Example:

Let "Polar” be the class declared in the example of page 37. Then
within the connection-block-2 of the connection-statement

inspect pew Polar(4,5) do beain end

a procedure “plus®" is available for vector addition.

5.9 COMPOUND STATEMENT

compound-statement
= (* label ":* *) unlabelled-compound

unlabelled-compound
= “"begin® compound-tail

compound-tail
= statement (* °;" statement *) “end”

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

86 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

This syntax may be illustrated as follows: Denoting arbitrary
statements and labels, by the 1letters S and L, respectively, the
syntactic unit takes the form:

L:L:... begin S;S5;...5;S end

It should be Xept in mind that each of the statements S may be a
complete compound-statement or block.

Example:

begin x:=0;
for y:=1 step 1 until n do x := x + a(y);
if x>q then gotg stop
if x>w-2 then goto s;
aw: st: w:=x+bob
end

5.10 BLOCKS

block
= subblock
! prefixed-block

subblock
= (* label ":" *) unlabelled-block

unlabelled-block
= block-head ";* compound-tail

block-head
= ‘"begin®" declaration (* *;" declaration *)

This syntax may be illustrated as follows: Denoting arbitrary

statements, declarations, and labels, by the letters S, D, and L,
respectively, the syntactic unit takes the form:

L:L:... begin D;D;...D;S;S5;...5;S end

It should be kept in mind that each of the statements S may be a
complete compound-statement or block.

Every block automatically introduces a new level of nomenclature. This
is realized as follows. Any identifier occurring within the block may
through a suitable declaration be specified to be local to the block
in question. This means that

1) the entity represented by this identifier inside the block
has nao existence outside it, and

2) any entity represented by this identifier outside the block
is completely inaccessible inside the block.

Identifiers (except those representing labels) occurring within a

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 87
STATEMENTS

block and not being declared to this block will be non-local to it,
i.e. will represent the same entity inside the block and in the level
immediately outside it. A label separated by a colon from a statement,
i.e. labelling that statement, behaves as though declared in the head
of the smallest embracing block, i.e. the smallest block whose
brackets begin and end enclose that statement.

A label is said to be implicitly declared in this block-head, as
distinct from the explicit declaration of all other local identifiers.
In this context a procedure-body, or the statement following a for-
clause, must be considered as if it were enclosed by begin and end and
treated as a block, this block being nested within the fictitious
block of page 80 in the case of a procedure with parameters by value.
A label that is not within any block of the program (nor within a
procedure-body, or the statement following a for-clause) is implicitly
declared in the environmental prefix.

Since a statement of a block may again itself be a block the concepts
local and non-local to a block must be understood recursively. Thus an
identifier which is non-local to a block A, may or may not be non-
local to the block B in which A is one statement.

Example:

Q: begin integer i, k; real w;
for i:=1 step -1 until m do
for k:=i+1 gtep 1 until m do beqin

W = A(i,k);
A(L, k) := A(k,1);
Alk,1) := w;
end for 1 and X
end block Q

5.10.1 PREFIXED-BLOCKS

prefixed-block
= (* label ":" *) unlabelled-prefixed-block

unlabelled-prefixed-block
= block-prefix main-block

block-prefix
= class-identifier [actual-parameter-part)

main-block
= unlabelled-block
! unlabelled-compound

An instance of a prefixed-block is a compound object whose prefix part
Is an object of the class identified by the block-prefix, and whose
main part is an instance of the main-block. The formal parameters of
the former are initialized as indicated by the actual parameters of
the block-prefix. The concatenation is defined by rules similar to
those of page 34 et seq.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

88 ND-500 SIMULA REFERENCE MANUAL
STATEMENTS

The following restrictions must be observed:

1) A class in which reference is made to the class itself
through use of °this®, is an illegal block-prefix.

2) The class-identifier of a block-prefix must refer to a class
local to the smallest block enclosing the prefixed-block. If
that class-identifier is that of a system class, it refers to
a fictitious declaration of that system class occurring in
the block-head of the smallest enclosing block.

A program is enclosed in a prefixed-block.

Example:

Let “"hashing” be the class declared in the example of page 38. Then
within the prefixed-block,

hashing (64) beqin integer procedure hash(T);
vyalue T; Lext T; ... ;

end

a "lookup™ procedure 1is available which makes use of the "hash”
procedure declared within the main-block.

5. 11 DUMMY-STATEMENTS

dummy-statement
= empty

A dummy-statement executes no operation. It may serve to place a
label.

Example:

L:
begin statements; John: engd

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

INPUT/QUTPUT STATEMENTS

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

89

90

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

.

ND-500 SIMULA REFERENCE MANUAL 91
INPUT/OUTPUT STATEMENTS

§ INPUT/OUTPUT STATEMENTS

The semantics of certain I/0 facilities will rely on the intuitive
notion of "files®", which are collections of data external to the the
program and organized in a sequential or addressable manner. Actually,
a file may in practice be any kind of external device with
communication capabilities, such as a terminal, a sensory device, etc.
There are two basic modes of file organization, "sequential files” and
"direct files".

Examples of sequential files are:

- a system controlled area of a magnetic disk
- a series of printed lines

- input from a keyboard

- data on a tape.

An example of a direct file is a collection of data on a storage
medium which allows random access; e.g. a disk or a drum, where each
item is identified by a unique integer.

I/0 facilities are introduced through block prefixing. For the purpose
of this presentation, this collection of facilities will be described
by a class called "BASICIO". This class identifier is not explicitly
available to the user. The “file” subclasses are available at any
block level of a program. An implementation may restrict the number of
different block levels where these class identifiers are used for
prefixing.

The overall organization of *BASICIO" is as follows:

ENVIRONMENT glass BASICIO (INPUT_LINELENGTH, OUTPUT_LINELENGTH);
integer INPUT_LINELENGTH, OUTPUT_LINELENGTH;
beqin ref (infile) SYSIN; ref (outfile) SYSOUT;

ref (infile) procedure sysin; sysin:- SYSIN;

ref (printfile) procedure sysout; sysout:- SYSOUT;

class file ;
file clags imagefile ;
file class bytefile ;
imagefile ¢lass infile ;
imagefile class outfile ;
imagefile clags directfile ;
outfile ¢lass printfile ;
bytefile class inbytefile ;
bytefile ¢lass outbytefile ;

pracedure terminate_program;
beqin ; go to STOP eand terminate_program;

SYSIN:- new infile("...");

SYSOUT:- pew printfile("..."); :
SYSIN.open(blanks(INPUT_LINELENGTH)});
SYSOUT.open(blanks(OUTPUT_LINELENGTH));

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

92 ND~500 SIMULA REFERENCE MANUAL
INPUT/OQUTPUT STATEMENTS

anner;
STOP: SYSIN.close;
SYSOUT.close
end BASICIO;

The user’'s program acts as if it were enclosed by the following block:

BASICIO (inlength, outlength) begjin

inspect SYSIN do

inspect SYSOUT do

begin <external head) <(program> end
end prefixed block

The files SYSIN and SYSOUT are opened and (if not done explicitly
prior to program termination) closed within “BASICIO®, 1i.e. outside
the program itself.

In any program execution the unique instance of this prefixed block
constitutes the system head of the outermost quasi-parallel system
(see page 140).

The actual values of inlength and outlength are device dependent.
Their default values are 80 and 132 respectively.

SYSIN and SYSOUT may represent the input and output aspects of an
interactive terminal (in which case 1inlength and outlength are
probably equal}. In other cases, for example batch runs, SYSIN may
represent record-oriented input and SYSOUT may represent line-printer-
oriented output.

A program may refer to the corresponding file objects through SYSIN
and SYSOUT respectively. Most attributes of these file objects are

directly available as the result of the connection blocks enclosing
the progranm.

The procedure "terminate_program" terminates program execution.

6.1 THE CLASS °FILE®
The class “"file” 1is the common prefix class for all input/output

classes.

¢class file(FILENAME); vyalue FILENAME; text FILENAME;
begin text procedure filename;
filename:- copy(FILENAME);

Boolean OPEN;
Boolean procedure isopen; isopen:= OPEN;

Boolean procedure deletefile; ;

Boolean procedure renamefile(newname);
text newname; ;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 93
INPUT/OUTPUT STATEMENTS

Boolean procedure setaccess(mode); Lext mode;

Within a program, an object of a subclass of "file" is used to
represent a file. A file is either open or closed as indicated by the
variable "OPEN". The procedure “isopen” returns the current value of
*OPEN". A file is initially closed.

Eilename

Each “file" object has a text attribute "FILENAME®. It is assumed that
this text value identifies an external file which, at “open”, through
an implementation defined mechanism, becomes associated with the
“file" object. If the parameter is notext, the system generates a
unique file.

Deletefile

The procedure "deletefile® makes, through an implementation defined
mechanism, the associated external €£ile inaccessible for future
access. A false result indicates that the intended operation failed

(e.g. because the access privileges/protection status of the file were
such that deletion was not allowed).

Renamefile
The procedure "renamefile* will change the external file

identification to the one given. A false result indicates rename
failure (cf. “deletefile”).

open and close In all subclasses of "file" there exist (on some level)
the procedures "open®” and ‘"close” which perform the opening and
closing operations on the file. If a specified access mode (see below)
cannot be satisfied at open, the “open" function designator will
return the value false. The details of these procedures are
implementation defined, but they must conform to the following
pattern.

Boolean procedure open ;

if OPEN then !no effect;

else if ...! the file could be opened successfully; then
begin open:= OPEN:= true;

end open;

Boolean procedure close;
Lf OPEN then

begin OPEN:= false;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

94 ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

The procedure “setaccess” sets parameters controlling the nature of
the file access. Only one mode may be specified in each "setaccess"
call. Upper and lower case of the same letter in parameters are
considered equal. Unrecognized or irrelevant modes are ignored and
"setaccess” then returns the value false. A specific mode will be
interpreted either at next °"open" or next “close”. A mode which is set
after "open® ("close") will not have any effect until the next ‘"open®
("close®).

Standard access modes are:

Mode --- Default values ---
- Files of type -
In- Qut- Direct-

Effect at “open”:

(NO) SHARED SHARED NOSHARED NOSHARED
(NO)APPEND Ignored NOAPPEND NOAPPEND
(ANY/NO)CREATE Ignored ANYCREATE NOCREATE
(NO)READONLY Ignored Ignored NOREADONLY
(NO)WRITEONLY Ignored Ignored NOWRITEONLY
BYTESIZE:x -~ sets bytesize for bytefile -~-

Effect at *close”:

(NO)REWIND NOREWIND NOREWIND Ignored
(NO) PURGE NOPURGE NOPURGE NOPURGE

An implementation may define additional modes. Such modes should start
with a percent character '%’ in order to avoid conflicts with future
access modes.

Explanation of standard modes:
At "open”:

The mode NOSHARED implies that the program should be the only program
operating on the file (from ‘open" to "close"). SHARED implies that
simultaneous access 1is acceptable. Several programs using SHARED
access on an outfile may produce unpredictable results (cf. procedure
"lock", below in this section).

The mode APPEND implies that output should be added to the end of the
file. NOAPPEND implies that after "close” the external file will
contain only the output produced between “open" and "close". For out-
type files, APPEND implies NOSHARED. For direct files, APPEND implies
that output is only possible at the (current) end of the file (this
enables multiprocessor logging on the same file).

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL i 95
INPUT/OUTPUT STATEMENTS

The mode CREATE implies that that an old file with the given
(associated external) name must not exist. If it does, "open® will
return false. NOCREATE implies that such a file must exist. The mode
ANYCREATE may be used to reset this mode (i.e. allowing either of the
two states).

For direct files only:

The mode READONLY implies that only input operations are allowed. An
attempt to call outimage results in a runtime error. Ignored if
WRITEONLY was set.

The mode WRITEONLY implies that only output operations are allowed.
The purpose of this mode is to enable programs to deposit mail like
messages in a mailbox file where previously deposited mail should be
inaccessible to the sender. Ignored if READONLY was set.

For bytefiles only:

The mode BYTESIZE:<(integer> defines the byte size for a bytefile (cf.
page 111).

At "close”:

The mode REWIND indicates that some resetting of the external device
should occur. Typically it may cause a magnetic tape to be rewound.

The mode PURGE-implies that the file after the "close"” statement may
be deleted by the file system; it will then be assumed to be
inaccessible to future program access.

Direct type file positioning

Characteristic for direct type files is the procedure “locate” for
file positioning. Depending on the orientation of the data handled,
the parameter will have 1local interpretations. The procedure
“location® returns the current value of the actual position.

Checkpoint

All files producing output (either output type files or direct type
files) contain a Booleap procedure “checkpoint®. A “checkpoint® call
asks the underlying system to attempt to secure the produced output.
Depending on the nature of the associated external device, this causes
completion of output transfer (i.e. intermediate buffer contents are
transferred) or, if this is not possible or meaningful, a dummy
operation, in which case the value false is returned.

File locking

integer procedure lock({timelimit,loct,loc2);
real timelimit; integer loct,loc2;
beqin if LOCKED then unlock;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

96 ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

... ! lock indicated part of file;...
end lock;
Boolean procedure unlock;
begin unlocked:= checkpoint;

if LOCKED then

begin ... ! release file;...;

LOCKED:= false

end

end unlock;

Boolean procedure locked; 1locked:= LOCKED;

The direct type files contain procedures for control of simultaneous
access of the file (cf. access mode SHARED).

The variable "LOCKED" indicates if the file is currently locked by the
executing program. The procedure °®locked" returns the current value.

The integer procedure “lock" enables the program to get exclusive
access to the whole or part of the file. The procedure accepts the
following parameters. “Timelimit" is the {(real) time in seconds that
is the maximum wait time for the resource. If the timelimit |is
exceeded the procedure returns the value -1. "Timelimit" less than or
equal to zero implies immediate return. The next two parameters,
*loct® and "loc2®, 1identify the part of the file to be locked.
Depending on host capabilities, the executing program will be given
exclusive access to a part of the file which includes the requested
region. On some host (file) systems, lockable units may be greater
than the requested region and this may even force the entire file to
be locked. If the two parameters are both zero, this will imply
locking the whole file. A value of =zero returned indicates a
successful *lock® operation. A negative value less than -1 indicates
"lock” failure and its interpretation is implementation defined. The
effect of a "lock" call while the file is locked ("LOCKED" is truye) is
that the previous lock will be immediately released (prior to the
requested new locking attempt).

The Boolean procedure "unlock® eliminates the effect of any preceding

"lock" <call. The Boolean procedure “"checkpoint® is called initially.
The returned value is that returned by the "checkpoint® call.

St:"::”xg Qr .flli- i!lh:]iiiii

There are three predefined subclasses of “file":

"imagefile® - image (or line) oriented files
"bytefile® -- character (or “"byte") oriented files
‘binfile* --- binary (unformatted) files.

These subclasses have each three subclasses defining the directional
mode of operation; input oriented files, output oriented files and
random access oriented files (i.e. directfiles). In addition there 1is
defined a subclass to (imagefile) class outfile for line-printer-
oriented output, the class printfile.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 97
INPUT/QUTPUT STATEMENTS

6.2 IMAGEFILES

Image oriented files operate on logical images, where an image is a
representation of sequéential characters. An image has a maximum
length.

Note: In this section (Imagefiles), images are referred to
as having associated with them "ordinal® numbers,
which they are addressable by. Thus, for example, the
procedure "inimage” may perform the transfer of the
“first®, "second", and so forth external file images.
These ‘“ordinal® numbers are stored 1in variables
(e.g. "LOC"), and they are accessible by procedures
(e.g. "setimage”). It is important to note that these
numbers are actually cardinal numbers (e.g. “one",
“two”, etc., interpreted in an ordinal sense (e.q.

"image number 1", "image number 2", etc.).

6.2.1 THE CLASS "IMAGEFILE®

The class "imagefile" defines the common attributes for all image-
oriented files.

N

file class imagefile;
Regin text image;
procedure setpos(i); integer i;
image.setpos(i};
integer procedure pos;
pos:= image.pos;
Boolean procedure more;
more:= image.more;
inteqer procedure length;
length:= image.length;

end imagefile; s

The variable "image" is used to reference a text frame which acts as a
‘buffer®, in the sense that it contains the external file image
currently being processed.

The procedures "setpos", “pos®, "more® and "length® are introduced for
reasons of convenience.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

98 ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

There are four types of imagefiles:

*infile" a sequential file for which input operations (transfer
of data from file to program) are available.

‘outfile" a sequential file for which output operations (transfer
of data from program to file) are available.

"directfile” a direct (random) access file with facilities for both
input and output.

"printfile* a sequential file with facilities oriented towards line
‘printers (a subclass of "outfile’).

6.2.2 THE CLASS "INFILE"
The class "infile" defines image oriented input operations.

imagefile class infile;
begin Boolean ENDFILE;
inteqger IMAGECOUNT;
Boolean procedure open{fileimage);
text fileimage;
if OPEN then 'no effect;

else if ...! the file could be opened successfully; then-
begin open:= OPEN:= true;
ENDFILE:= false;

image:- fileimage;
image:= notext;
IMAGECOUNT:= O;
setpos(length+1)

end open;
Boolean procedure close;
if OPEN then
begin ;
image:- ngtext;
OPEN:= false;
close:= ENDFILE:= true
end close;

Boolean procedure setimage(i); ipteger i;

if 1 > O then
begin if 1 < IMAGECOUNT then
begin if ... ! Successful “reset” ; then

begin IMAGECOUNT:= O;
setimage:= true
end
end else setimage:= true;
while IMAGECOUNT ¢ i and not ENDFILE do
inimage
end setimage;

Boglean procedure endfile; endfile:= ENDFILE;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

inteqger procedure imagecount; imagecount:= IMAGECOUNT;

procedure inimage;

if not OPEN then ~

error("..." !Inimage on closed file ;) else
if ENDFILE then

error(”..." !Inimage on exhausted file ;) else

begip ... ! attempt to store external image in "image*;...;

if ... ! "image"” too short; then
error(”..."
'Inimage on too long external image ;)
else
begin if ... ! there was no more to read; then
beqin ENDFILE:= true;
image:= “!25!"
end else
beqin.. ! pad image with blank(s);
IMAGECOUNT:= IMAGECOUNT+1

end
end;
setpos(1)
end inimage;

Boolean procedure inrecord;

if not OPEN then

exror("..." !Inrecord on closed file ;) else
if ENDFILE then

error("..." !Inrecord on exhausted file ;) else

begin ... ! attempt to store external image in "image";...;

if ... ! no more to read; ... then
bedin ENDFILE:= true;
image:= *"!125{";
n:= 1
end else
begin n:= ... ! number of characters transferred;
inrecord:= not
.! whole external record received?;...;
IMAGECOUNT:= IMAGECOUNT+1
end;
! Note, no blanking of rest of image;
setpos(n+1)
end inrecord;

character procedure inchar;
begin if net more then inimage;

inchar:= image.getchar
end inchar;

Boolean procedure lastitem;
begin s:.huicr.:x c;

c:
whxle not ENDFILE and then
(c="'"'orelsecs="9!") do
c:= inchar;
lastitem:= ENDFILE; .
i1f ¢ <> ' ' then setpos(pos-1)

end lastitem;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

100 ND-500 SIMULA REFERENCE MANUAL
INPUT/QUTPUT STATEMENTS

integer procedyre inint;
begin text t;
if lastitem then error("..." ! Inint: End of file ;);
t:- image.sub(pos,length-pos+1);
inint:= t.getint;:
setpos(pos+t.pos-1)
end inint;

long real proceduxe inreal; ;
integer procedure infrac; ;

text procedure intext(w); integer w;
begin text ¢;

intext:- t:- blanks(w);

while t.more do t.putchar(inchar)
end intext;

end infile;

An object of the class "infile" is used to represent a sequentially
organized input file.

The procedure “inimage" performs the transfer of an external file
image into the text “"image®. A runtime error occurs if the text is
notext or 1f otherwise "image® is too short to contain the external
image. If "image" is longer than the external image, the latter 1is
left-justified and the remainder of the text is filled with <(blank>
characters. The position indicator is set to one.

The procedure ‘inrecord® is similar to “inimage" with the following
exceptions., Whenever the number of characters accessible in the input
(physical) image is less than "length®”, the rest of image 1is left
unchanged. The part of the image that was changed is from pos 1 upto
(but not including) resulting value of °*POS". Moreover, if the
external image 1i1s too long, only the "length" first characters are
input; the remaining characters are input at the subsequent “inrecord®
{or possibly ‘"inimage”) statement. The fact that there remain
characters in the external image is indicated by the returned value
true. Otherwise, if the input of the external image was completed, the
value false is returned.

If an "end of file" is encountered, the text value "!25!" is assigned
to the text “image® and the variable "ENDFILE® is given the value
true. A call on "inimage" or "inrecord” when "ENDFILE" already has the
value trye constitutes a runtime error.

The procedure "open®” gives "ENDFILE" the value false and fills "image"
with blanks.

The procedure "endfile” gives access to the value of the wvariable
“ENDFILE". :

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 101
INPUT/OUTPUT STATEMENTS

The variable “IMAGECOUNT" represents the number of images that have
been read. It is accessible through the procedure “imagecount”.

The procedure ®setimage®” makes subsequent input start from the image
indicated by the parameter. The images in the file are associated with
ordinal numbers, starting with one. A non-positive parameter value 1is
ignored. On some external devices, for which “setimage” 1is not
meaningful, the returned value is false (in which case there is no
action performed), otherwise the value true is returned. IMAGECOUNT is
adjusted accordingly.

The procedure "inchar® gives access to and scans past the next
character.

The procedure "lastitem® has the purpose of skipping past all <blank>
and <tab) (ISO code 3) characters. The process of scanning may involve
the transfer of several successive external images until the first one
containing a non-<blank>, non-<{tab> character 1is encountered. The
position indicator is set to designate this character and the returned
result is false. If the file contains no further non-<(blank>,
non-<tab> characters the value ftrue is returned.

The expression “"intext(n)" where n is a positive integer 1is a
reference to a new alterable main frame of length "n® containing the
next "n* characters of the file. "P0S" is set to the position of the
following character. The expression "intext(0Q)" references potext. 1In
contrast to the item-oriented procedures (see below), ‘intext”
operates on a continuous stream of characters, reading several images
if necessary.

The procedures “inchar”, “intext”, "inimage®" and "inrecord” may all
give access to the contents of the image which corresponds to an “end
of file”.

The remaining procedures provide mechanisms for "item oriented" input.
They will skip past any intermediate sequences of <blank>s and <(tab>s
by calling "lastitem".

The procedures "inint®, "inreal" and "infrac® are defined in terms of
the corresponding de-editing procedures of “image®. These three

procedures will scan past and convert a numeric item starting with the
first non-<(blank>, non-<(tab) character and contained in one image.

6.2.3 THE CLASS "OUTFILE®
The class "outfile® defines image oriented output operations.
file clasg outfile;
beqin inteqer LINE;
Boolean procedure open(fileimage);
text fileimage;
if OPEN then !No effect;
else if ...! the file could be opened successfully; then

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

102

ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

beqin open:= OPEN:= true;
image:~ fileimage;
setpos(1);
LINE:= 0

end open;

Boolean procedure close;

if OPEN then

begin if pos <> 1 then outimage;
OPEN:= false;
close:= true;
image:-~ potext;

end close;
Boolean procedure checkpoint; ;

procedure outimage;
beqgin if not OPEN then
error("..." ! Outimage on closed file. ;);

image:= potext;
LINE:= LINE+?;
setpos(1)

end outimage;

procedure outrecord;
begin if not OPEN then
error(”"...” ! Qutrecord on closed file. ;)};
! transfer image.sub(1,pos-1); ...;
! Note, no blanking of image;
setpos(1)
end outrecorq;

integer procedure line;
line:= LINE;

procedure outchar(c); character c;

beqin if not more then outimage;
image.putchar(c)

end outchar;

text procedure field(w); integer w;
begin if w<0 or w>length then
error(”"..." ! Output item out of field. ;);
if pos+w-1 > length then outimage;
field:- image.sub(pos,w);
setpos (pos+w)
end field;

procedure outint(i,w); integex i,w;
begin if w = O then field(...).putint(i)

else
if w ¢ O then
beqin text f;

f:- field(-w);
f:= notext;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 103
INPUT/OUTPUT STATEMENTS

£.sub(1,...).putint(i)
end else .
field(w).putint(i);
end outint;

procedure outfix(r,n,w); long real r;
integer n,w;

field(w).putfix(r,n)
end outfix;

procedure outreal(r,n,w); lond real r;
integer n,w;

field(w).putreal(r,n)
end outreal;

procedyre outfrac(i,n,w); integex i,n,w;

begin
field(w).putfrac(i,n)

end outfrac;

procedure outtext(t); text t;

begin if pos > 1 and then t.length > length-pos+! then outimage;
t.setpos(1);
while t.more do outchar(t.getchar);

end outtext;

procedure breakoutimage;
begin if not OPEN then
error("..." ! Breakoutimage on closed file ;);
... ! output image.sub(1,pos-1);...;
image:= notext;
setpos(1)
end breakoutimage;

end outfile;

An object of the class “outfile” is used to represent a sequentially
organized output file.

The transfer of an image from ¢the text “image” to the file 1is
performed by the procedure ‘outimage®. The procedure reacts in an
implementation defined way if the image length is not appropriate for
the external file. (Depending on file type and host system, the
external file does not necessarily store trailing blanks from the
image.) After the transfer, “image" is cleared to blanks and the
position indicator is set to 1. The variable "LINE®" is incremented by
one., The procedure °“line" gives access to current value of "LINE®.

The procedure 'outrecord'. transfers to the file only that part of
image which precedes "P0S*. The contents are not blanked after the
transfer, although °"POS" is set to one.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

104 ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

The procedure "breakoutimage® outputs the part of image that precedes
*P0OS", suppressing any line terminators. After transfer the image 1is
blanked and "POS" is set to one. On some physical media this operation
is not possible and will then have an effect identical to “outrecord"
followed by blanking of "image”.

The procedure “close” calls "outimage® if the position indicator is
different from 1.

The procedure "checkpoint® is described on page 95.

The procedure ‘outchar® stores a character in the °"P0OS® position of
image; if "more” is false, “"outimage” is called first.

The remaining procedures provide facilities for “item-oriented®
output. Each item is edited into a subtext of "image® of a specified
width. The first character of the subtext is the one identified by the
position indicator of “"image®. The position indicator is advanced
correspondingly. If an item would extend beyond the last character of
*image®, the procedure "outimage” is called implicitly prior ¢to the
editing operation.

With the exception of "outtext”, a runtime error will occur if an item
cannot be contained within the full length of “image*. Procedure
“outtext” will always transfer the complete text parameter contents to
the file.

The procedures "outint”, "outfix”, "outreal" and "outfrac® are defined
in terms of the corresponding editing procedures of “image®. They
include an additional integer parameter which specifies' the width of
the subtext 1into which the item is to be edited. A positive width
signifies right-justification. A zero width parameter edits the item
into the 1image with no leading blanks. A negative parameter implies
using a width equal to the absolute parameter value and the item is
left-justified within the field.

6.2.4 THE CLASS °DIRECTFILE®

The <class directfile defines image oriented operations on direct
access files.

imagefile glass directfile;
begin integer LOC, MAXLOC; Boolean ENDFILE, LOCKED;
integer procedure location; location:= LQC;

procedure locate(i); integer i;
begin if i < 1 thepn error(®..." ! Locate parm. ¢ 1 ;);

if 1 > MAXLOC then
error(®..." ! Locate parm. > MAXLOC ;);

end locate;

integer procedure lastloc;
ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 105
INPUT/OUTPUT STATEMENTS

begin if not OPEN then
error(”..." ! Lastloc on closed file; };
lastloc:=
end lastloc;

lnteger procedure:maxloc;
begin if not OPEN then
error(”..." ! Maxloc on closed file; };
maxloc:=
end maxloc;

Boolean procedure locked; locked:= LOCKED;

Boolean procedure open{fileimage); text fileimage;
1f OPEN then !No effect; else
if ...! the file could be opened successfully; then
beqin open:= OPEN:= true;

MAXLOC:= if ! fixed allocation; then

! fixed value;
else maxint-1;

image:- fileimage;

setpos(1);

locate(1)
end open;

Boolean procedure close ;
Lf OPEN then
beqin image:- notext;
OPEN:= false;
1f LOCKED then unlock;
close:= ENDFILE:= true;
MAXLOC:= O;

end close;

Boolean procedure checkpoint; ;
Boolean procedure endfile; endfile:= ENDFILE;

procedure inimage;
heqin setpos(1};

ENDFILE:= LOC > lastloc;

if ENDFILE then image:= "!25!" else

if ... ! external image ¥ LOC already exists ; then
! transfer to image;...

else
begin
while more do image.putchar('!0!'}
! Note that pos is now = length+1;
end not written;
locate(LOC+1) ! Location for *nextt® image;
end inimage;

procedure outimage;
L1f LOC > MAXLOC then
error("..." !'Outimage, file overflow ;) else

ND-60.208.1 EN

—— Scanned-byJonny OddeneforSintrapData©2040— =

106 ND-500 SIMULA REFERENCE MANUAL
INPUT/OQUTPUT STATEMENTS

beqin if not OPEN thep
error{"..." ! Qutimage on closed file;)};
! output "image" to external image § LOC; ...;
locate(LOC+1);
image:= potext;
setpos(1)
end outimage;

Boolean procedure deleteimage;

beain if ... ! image LOC was written; then
begin if ... ! delete operation successful; then
begin deleteimage:= true;
locate(LOC+1); '

end successful
end
end deleteimage;

character procedure inchar;
beain while not more do inimage;

inchar:= image.getchar
end inchar;

Boolean procedure lastitem ;
integer procedure inint ;
long real procedure inreal ;
integer procedure infrac :
text procedure intext ;
procedure outchar ;

procedure outfix ;
procedure outreal ;
procedure outfrac ;
procedure outtext ;

end directfile;

An object of the class "directfile” is used to represent an external
file in which the 1individual images are addressable by ordinal
numbers. The variable "LOC" contains the current ordinal number. When
the file is closed, the value of *LOC" is zero. The procedure
location” gives access to the current value of "LOC. The procedure
“locate” may be used to assign a given value to the variable. There
are no visible side effects, although the assignment may be
accompanied by implementation defined checks and (possibly
asynchronous) instructions to an external memory device associated
with the file. A parameter to *locate® less than one or greater than
"MAXLOC" constitutes a runtime error.

ND-60.208.1 EN

Arv-Oddene-for-Sintran Data ©.2010

Yy UCIIII]

ND-500 SIMULA REFERENCE MANUAL 107
INPUT/OUTPUT STATEMENTS

The procedure "lastloc® indicates the location of the (so far) highest
written image. For a new file the returned value is zero.

The Boolean procedure "endfile® returns trye when the file 1is closed
or when an image with location greater than "lastloc" has been input
{through "inimage"). It 'will be set after each "inimage" statement.

The variable *MAXLOC" indicates the highest permitted value of “LOC".
On some systems this value corresponds to the size of a preallocated
file, while on other systems which allow the file to be dynamically
extended, this variable is assigned the value "maxint®-1. The actual
value is accessible through procedure “"maxloc".

The procedure °checkpoint® is described on page 95.

The procedure "open”® locates the first image of the file. The length
of image must, at all ‘inimage" and ‘outimage' statements, be
identical to the length of image at the *open® call.

The procedure ‘inimage" transfers into the text ®image® a copy of the
external image as currently identified by the variable "LOC". If the
file does not contain an image with an ordinal number equal to the
value of *LOC*, the effect of the procedure "inimage” is as follows.
If the indicated location is greater than "lastloc", then ENDFILE is
set to true and the end of file text ("!25!*) is assigned to “image”.
Otherwise, if-the image is a non-written image {where there exists at
least one written image whose LOC is greater than curreat LOC), then
the image is filled with <null> (ISO code O) characters and the
position indicator 1is set to "length"+1 (i.e. "more" becomes false).
Finally the value of "LOC" is incremented by one through a ‘locate"
call.

The procedure "outimage” transfers a copy of the text value "image” to
the external image, thereby storing in the £file an external image
whose ordinal number is equal to the current value of "LOC". If the
file contains another image with the same ordinal number, that image
is overwritten. The value of "LOC" is then incremented by one through
a "locate® call.

The Boolean procedure "deleteimage® makes the image with current "LOC*
effectively un-written. Irrespective of any physical differences on
the external medium between never-written images and deleted ones,
there is no difference from the program's point of view. Note that
this means that "deleteimage®" may decrement the value returned by
*lastloc® (in case "LOC" was equal to “lastloc").

OQutputting images completely £illed with <null> (IS0 code 0) at the
end of the file will not necessarily decrement the “lastloc® value;
explicit writing {outimage) of such images should be avoided.

The procedures ®"lock®” and “unlock® (see page 95), provide locking

mechanisms. The last two parameters of "lock® indicate the minimum
range of locations to be locked (inclusive).

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

108 ND-500 SIMULA REFERENCE MANUAL
INPUT/OQUTPUT STATEMENTS

The remaining procedures (°lastitem® ¢to ‘intext®" and “outchar® to
“outtext®) are defined in accordance with the corresponding procedures
in "infile®" and "outfile" respectively.

§.2.5 THE CLASS "PRINTFILE"

The class "printfile® defines a class for line printer-oriented
output.

outfile class printfile;
begin integer LINES_PER_PAGE, SPACING, PAGE;

procedure linesperpage(n); integer n;

LINES_PER_PAGE:=
if n ¢ O then maxint glse
1f n = O then ... ! default value;...
elsa n
end linesperpage;

procedure spacing(n); integer n;
if n < O thepn error(®..." !Spacing parm. ¢ O ;) else
if n > LINES_PER_PAGE then

error(”...” !Spacing parm. > LINES_PER_PAGE ;)
else SPACING:= n;

integer procedure page;
page:= PAGE;

procedure eject(n); integer n;
begin if not OPEN then
error("..." ! Eject on closed file ;);
if n <= 0 then
error("..." ! Eject parm. <=0 ;};
f n > LINES_PER_PAGE then n:= 1;

[N

if n <= LINE then
begin ... ! new page;...;
PAGE:= PAGE + 1
m:
... ! move to line *n"
LINE:= n
end eject;

Boolean procedure open(fileimage); text fileimage;
if OPEN then !No effect;
else if ...! the file could be opened successfully; then
begin open:= OPEN:= true;
image:- fileimage;
setpos(1);
PAGE:= O;
LINE:= 1;
eject(1)
end open;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 109
INPUT/OUTPUT STATEMENTS

 Boolean procedure close;

if pos <> 1 then outimage;
eject (LINES_PER_PAGE);

" OPEN:= false;
close:= ftrue;
LINE:= O;
SPACING:= 1;
LINES_PER_PAGE:= ;
image:- notext
end close;

procedure outimage;
begin if not OPEN then
error(“..." ! OQutimage on closed file ;);
if LINE > LINES_PER_PAGE thepn eject(1);
! output the image on the line
indicated by LINE;
LINE:= LINE + SPACING;
image:= notext;
setpos(1)
end outimage;

procedure outrecord;
begin if not OPEN then
error(®..." ! Outrecord on closed file ;);
if LINE > LINES_PER_PAGE then eject(1Y;
! output image.sub(1,pos-1) on the line
indicated by LINE;
LINE:= LINE + SPACING;
setpos(1)
end outrecord;

SPACING:= 1;
LINES_PER_PAGE:=

end printfile;

An object of the class “"printfile® is used to represent a line
printer-oriented output file. The class is a subclass of "outfile®. A
file image represents a line on the printed page.

The variable *LINES_PER_PAGE" indicates the maximum number of physical
lines that may be printed on each page, including intervening blank
lines. An implementation defined value is assigned to the variable at
the time of object generation, and when the printfile is closed. The
procedure "linesperpage" may be used to change the value. If the
parameter to “"linesperpage” is zero, "LINES_PER_PAGE® is reset to the
original value (assigned at cbject generation). A parameter value less
than 2ero may be used to indicate an ‘'infinite' value of
LINES_PER_PAGE thus avoiding any automatic calls on "eject".

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

110 ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

The variable °SPACING" represents the value by which the variable
"LINE®" is incremented after the next printing operation. Its value
may be changed by the procedure ®spacing”. A call on the procedure
"spacing” with a parameter less than zero or greater than
"LINES_PER_PAGE" constitutes an error. The effect of a parameter to
"spacing® which is equal to zero may be defined to force successive
printing operations on the same physical line. Note however, that on
some physical media this may not be possible, in which case spacing(0)
has the same effect as spacing{1) (i.e. no overprinting).

The variable “LINE® indicates the ordinal number of the next line to
be printed (on the current page), provided that no implicit or
explicit "eject" statement occurs. Its value is accessible through the
procedure °line®. Note that the value of "LINE®" may be greater than
"LINES_PER_PAGE".

The procedure "eject” is used to position to a certain line identified
by the parameter, n. The variable *PAGE" is incremented by one each
time an explicit or implicit "eject" implies a new page.

The following cases can be distinguished:

n <=0 : ERROR

n > LINES_PER_PAGE: Equivalent to eject (1)

n <= LINE : Position to line number n on the next page

n > LINE : Position to line number n on the current page

The tests above are performed in the given sequence.
The procedure "page" gives access to the current value of *DPAGECOUNT™.

The procedures "outimage" and "outrecord” operate according to the
rules for “outfiles” (cf. page 10t et seq). In addition, they update
the variable "LINE".

The procedures "open® and "close® conform to the rules of page 33. In
addition, “"close" will output the current value of "image® if “POS" is
different from 1 and set LINE to zero.

It is a property of the system defined class ‘printfile® that
*outfile” attributes, which are redeclared at "printfile” level, are
not accessible to the user's program through explicit qualification
(qua). Thus these "outfile®" procedures ("open”, "close", "outimage”,
“outrecord”) may be envisaged to include the following initial code:

procedyre X...;
i this outfile when printfile do X...
otherwise ...;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 111
INPUT/OUTPUT STATEMENTS

6.3 BYTEFILES

6.3.1 THE CLASS "BYTEFILE"

The class bytefile 1is the common prefix class for all byte oriented
files.

file class bytefile;
begin short integexr BYTESIZE;

short inteqger procedure bytesize;
bytesize:= BYTESIZE;

procedure open;
if OPEN then !'No effect; else

if ... ! the file could be opened successfully; then
beqgin open:= QOPEN:= true;
BYTESIZE:=
end open;
end bytefile;

Bytefiles read and write files as continuous streams of bytes. The
access mode "BYTESIZE:x" to class “bytefile” defines the size of
transferred bytes (in number of bits). The actual value for the file
is accessible through procedure "bytesize®. The default value will be
implementation defined; this value will be used if x equals "0"
(zero).

A successful "open” call requires that an acceptable BYTESIZE was
defined at object generation. Otherwise the value false is returned.

Byte values are represented as integers in the range (0:2**BYTESIZE-1)
There are two files of type bytefile:

*inbytefile” representing a sequential file for which
input operations are available.

"outbytefile* representing a sequential file for which
output operations are available.

6.3.2 THE CLASS “INBYTEFILE®

The class “inbytefile" defines input operations on byte oriented
files.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

12 ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

bytefile gclass inbytefile;
beqin Boolean ENDFILE;
Boolean procedure open;
if OPEN then !no effect; else
if ... ! the file could be opened successfully; then
begin open:= OPEN:= true;
ENDFILE:= false;
BYTESIZE:=
end open;

Boolean procedure close;
if OPEN then
beain OPEN:= falge;
close:= ENDFILE:= true;

end close;

Boolean procedure endfile;
endfile:= ENDFILE;

short integer procedure inbyte;
begin if ENDFILE then error("..." ! End of file ;});

if ... ! no more bytes to read;

then ENDFILE:= true

@lse inbyte:= ...! next byte of size BYTESIZE;...
end inbyte; N

text procedure intext(t); text t;
begln t.setpos(1);
while t.more and not ENDFILE do
t.putchar(char(inbyte));
if ENDFILE then t.setpos(t.pos-1);
intext:- t.sub(1,t.pos-1)
end intext;

ENDFILE:= true
end inbytefile;

An object of the class “inbytefile® is used to represent a byte
oriented, sequentially organized input file.

The procedure "inbyte” returns the integer value corresponding to the
input byte. If there are no more bytes to read, a zero result is
returned. If, prior to an °inbyte" call, "ENDFILE" is true, a runtime
error will occur.

The procedure "intext® fills the frame of the parameter “t" with
successive input bytes.

The procedure "endfile® returns the value true if there are no more
bytes to read.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 113
INPUT/OQUTPUT STATEMENTS

6.3.3 THE CLASS "OUTBYTEFILE®

The class "outbytefile" defines output operations on byte oriented
files.

bytefile class outbytefile;
begin short integex BYTEBASE;
Boolean procedure open;
if OPEN then !no effect; else
if ...! the file could be opened successfully; then
beqin open:= OPEN:= true;
BYTEBASE:= 2**BYTESIZE

end open;

Boolean procedure close;

if OPEN then

begin OPEN:= false;
close:= true;

end clééé;...

Boolean procedure checkpoint; ;

procedure outbyte(x); short integer x;
begin if not OPEN then
error("..." ! Outbyte on closed file ;);
if x ¢ O or else x >= BYTEBASE then
error{"..." ! Outbyte, illegal byte value ;);
! output of x;
end outbyte;

procedure outtext(t); text t;
beqin t.setpos(1);

While t.more do
outbyte(rank(t.getchar))

end outtext;
end outbytefile;
An object of the class “outbytefile®" is used to represent a
sequentially organized output file of bytes.
The procedure “outbyte” outputs a byte corresponding to the parameter
value. If the parameter value is less than zero or exceeds the maximum
permitted value, as defined by current BYTESIZE, a runtime error

occurs. If the file is not open, a runtime error occurs.

The procedure "outtext® outputs all characters in the parameter *t" as
bytes.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

114 ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

§.4 FILE NAMING IN THE SINTRAN ENVIRONMENT

In addition to the usual SINTRAN III file name convention, elements of
partitioned data sets may also be specified.

Data set specifications have the general form:
file-spec (specifier)
file-spec

{({dir :) user))} filename
unit-number

specifier
: . type

@ access (/ connect-strategy)

. elementname (/ D }

Filename and elementname are sequences of letters, digits and minuses,
starting with a letter, i.e. standard ND-500 file names.

The connect-strategy is an integer giving information about the file:

0 -- file contains initial data
1 -- uninitialized, empty file
2 -- primarily sequential file
3 -- combination of 1 and 2

[T)

Examples:
(PACK-ONE:XLIB)QUICK-SORT: SYMB

(ND-SIMULA-ARQQ)SCREEN-IO:NRF
#100.SCRATCH-1/D:DATA

6.5 FILE OPENING
User SYSTEM is never searched implicitly when a file is searched. The

search strategy and the result depends on the type of the file being
opened as follows.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL
INPUT/OUTPUT STATEMENTS

n bytefile:

- If the file is found in user directory
atherwise try all library directories : if not found

- If element-specifier is present:
Check that SINTRAN-file is a SIMULA library file.

If it is not
Outfj o utb

- If the file is found in user directory
otherwise try to create a new file in user directory

- If element-specifier is present:
If SINTRAN-file is a SIMULA library file
otherwise if SINTRAN-file is empty
otherwise

- If the file is found in user directory
otherwise try to create a new file in user directory

- If element-specifier is present

SYSIN, SYSOUT or SYSTRACE:

OK
ERROR

ERROR

OK

OK

ERROR

OK

ERROR

- SYSIN, SYSOUT and SYSTRACE are attached to the job's primary

input and output files resp., which will normally be
input/output on a terminal.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

115

116

[
ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL V117

CHAPTER 7

IEXT HANOLING

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

118

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 119
TEXT HANDLING

7 TEXT HANDLING

7.1 TEXT ATTRIBUTES

The following procedures are attributes of any text variable.

Boolean procedure constant (see below)
inteqer procedure start (see below)
inteqer procedure length (see below)
text procedure main (see below)
integer procedure pos (cf. page 121)
procedure setpos (cf. page 121)
Boolean procedure more (cf. page 121)
character procedure getchar (cf. page 121)
proceduyre putchar (cf. page 121)
text procedure sub (cf. page 122)
text procedure strip (cf. page 123)
integer procedure getint (cf. page 126)

long real procedure getreal (cf. page 126)
inteqger procedure getfrac (cf. page 127)

procedure putint (cf. page 125)
procedure putfix (cf. page 125)
procedure putreal (cf. page 125)
procedure putfrac (cf. page 125)

They may be accessed by remote identifiers of the dot notation form
(cf. page 50), 1L.e.

simple-text-expression . procedure-identifier

In the following section "X" denotes a text variable unless otherwise
specified.

7.2 "CONSTANT®, “START®. "LENGTH" AND "MAIN®

The following code defines the procedures “constant”, “start”,
“length” and "main.

Boglean procedure constant;
constant:= OBJ == none or else OBJ.CONST,

ipteger procedure start; start:= START;
inteqer procedure length; length:= LENGTH;

text procedure main;
if OBJ == pope then wain:- potext else

ND-60.208.1 EN

Scanned bAJI Innny Qddene for Sintran Data © 2010

120 { ND-500 SIMULA REFERENCE MANUAL
TEXT HANDLING

begin text T; T.OBJ:- OBJ;
T.START:= 1;
T.LENGTH:= OBJ.SIZE;
T.POS:= 1{;
main:- T;

end;

“¥.main" 15 a reference to the main frame which contains the frame
referenced by X.

The following relations are true for any text variable X:

X.main.length >= X.length-
X.main.main == X.main
notext.main == potext
"ABC" .main = °‘ABC"

Examples:

Bqolean procedure overlapping(X,Y); text X,Y;
if X.main == Y.main then
" overlapping:= if X.start ¢(= Y.start then
' X.start + X.length > Y.start
else

Y.start + Y.length > X.start;

“overlapping(X,Y)" Ls true if and only if ¥ and Y reference text
frames which overlap each other.

Boolean procedure subtext(X,Y); text X,Y;
subtext:= X.main == Y.main
and then X.start >= Y.start
and then X.start + X.length (= Y.start + Y.length;

"subtext(X,Y)" is true if and only if X references a subframe of Y, or
if both reference notext.

7.3 CHARACTER ACCESS

The characters of a text are accessible one at a time. Any text
variable contains a “position 1indicator®, which identifies the
currently accessible character, if any, of the reference text frame.
The position indicator of a given text variable X is an integer in the
range (1,X.length+1).

The position indicator of a given text variable may be altered by the
procedures ‘“setpos®, ‘"getchar", and °putchar® of the text variable.

Also any of the procedures defined on pages 124 to 127 may alter the
position indicator of the text variable which contains the procedure.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 121
TEXT HANDLING

Position indicators are ignored and left unaltered by text reference
relations, text value relations and text value assignments.

The following procedures are facilities available for character
accessing. They are oriented towards sequential access.

integer procedure pos; pos:= POS;

procedure setpos(i); integer i;
POS:= if i ¢ 1 gr i > LENGTH + 1 then LENGTH + 1 else i;

Boolean procedure more;
more:= POS <= LENGTH;

character procedure getchar;
if POS > LENGTH then error(“...° ! Pos out of range;) else
beqin getchar:= OBJ.MAIN(START + POS - 1);
POS:= POS + 1
end getchar;

procedure putchar(c); character c;
if OBJ == none thep error(*..." ! Notext error;) else
if OBJ.CONST then error("..." ! Text constant error;) else
if POS > LENGTH thep error("..." ! Pos out of range;) else
kegin OBJ.MAIN(START + POS - 1):= c;

POS:= POS + 1
end putchar;

Note: The implicit modification of POS 1is lost immediately 1if
*setpos”, "getchar” or “putchar” is successfully applied to a
text-expression which is not a variable (cf. page 23).

Example:
procedure compact(T); text T;

begin text U; character c;
T.setpos(1);

U:- T;
while U.more do
beqgin c:=0.getchar;
if ¢ <> ' ' then T.putchar(c)
m.

T.more do T.putchar(' ')
end compact;

The procedure will rearrange the characters of the text <frame
referenced by its parameter. The non-blank characters are collected in
the leftmost part of the text frame and the remainder, if any, is
filled with the blank characters. Since the parameter is called by
reference, its position indicator 1is not altered. The character
constant ' ' represents a blank character value.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

122 ND-500 SIMULA REFERENCE MANUAL
TEXT HANDLING

7.4 TEXT GENERATION

The following standard procedures are available for text frame
generation:

text procedure blanks(n); inteqer n;
if n < O then error(*..." ! Parm. to blank < 0;) else
if n = 0 then blanks:- pnotext else
begin text T;

T.0BJ:- pew TEXTOBJ(n,false);

T.START:= 1;

T.LENGTH:= n;

T.P0S:= 1;

T:= notext;

blanks:- T
end blanks;

Blanks(n), with n > O, references a new alterable main frame of
length n, containing only blank characters. “Blanks(0)" references
notext. Observe that the statement “T:= notext" effectively fills the
text frame with blank characters. .

text procedure copy(T); text T;
if T == potext then copy:- notext else
beqin text U;
U.OBJ:- new TEXTOBJ({T.LENGTH,false);
U.START:= 1;
U.LENGTH:= T.LENGTH;
U.P0S:= 1;
U.= T,
copy:~ U
end copy;

.

“Copy(T)”, with T =/= notext, references a new alterable main frame
which contains the same text value as T.

7.5 SUBTEXTS

Two procedures are available for referencing subtexts {subframes).

text procedure sub(i,n); inteqger i,n;
if i ¢O0orn<0O0ori+n > LENGTH + then
error(*” " ! Sub out of frame;) else
;g = 0 hen sub:- pnotext else
beqgin text T;
T. OBJ - 0BJ;
T.START:= START + i - 1;
T.LENGTH:= n;
T.POS:= 1;
sub:- T
end;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 123
TEXT HANDLING

If legal, "¥X.sub(i,n)" references that subframe of X whose first
character is character number i of X, and which contains n consecutive
characters. The POS attribute of the expression defines a local
numbering of the characters within the subframe. If n = 0, the
expression references pnotext.

If legal, the following Boolean expressions are true for any text
variable X:

X.sub(i,n).sub(j,m) == X.sub(i+j-1,m)
n <> 0 imp X.main == X.sub(i,n).main

X.main.sub(X.start,X.length) == ¥

text procedure strip;

The expression “X.strip" 1s equivalent to "X.sub(t,n)", where n
indicates the position of the last non-blank character in X. If X does
not contain any non-~blank character, potext 1s returned.

Let X and Y be text variables. Then after the value assignment "X :=
Y*, if legal, the relation

X.Strip = Y.strip

has the value true, while the value of ¥ = Y will be true only if
X.length = Y. length.

7.6 NUMERIC TEXT VALUES

Note that the names of the syntactic units in this section are in
upper case to indicate that these rules concerns syntax for data and
not for program text.

NUMERIC- [TEM REAL-ITEM | GROUPED-ITEM

#

REAL-ITEM = DECIMAL-ITEM (EXPONENT)
! SIGN-PART EXPONENT

GROUPED-ITEM

SIGN-PART GROUPS (DECIMALMARK GROUPS)
! SICN-PART DECIMALMARK CROUPS

DECIMAL-ITEM INTEGER-ITEM (FRACTION)

SIGN-PART FRACTION

i}

INTEGER-ITEM = SICN-PART DIGITS

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

124 ND-500 SIMULA REFERENCE MANUAL
TEXT HANDLING

SIGN-PART = BLANKS SIGN BLANKS

EXPONENT = LOWTEN-CHARACTER INTEGER-ITEM

GROUPS = DIGITS (* BLANK DIGITS *)

SIGN = EMPTY ! + ! -

DIGITS = DIGIT (* DIGIT *)

DIGIT =0 ¢t t t 2 t 3 i 4
'8 !t 6 ! 7T t 8 ' 9

BLANKS = (* BLANK ' TAB *)

BLANK = IS0 code 32

TAB = IS0 code 9

EMPTY =

LOWTEN-CHARACTER ...initial value...

DECIMALMARK =

The syntax applies to sequences of characters, 1.e. to text values.

A numeric item is a character sequence which may be derived from
NUMERIC-ITEM. “Editing" and "de-editing” procedures are available for
the conversion between arithmetic values and text values which are
numeric items, and vice versa.

7.7 EDITING PROCEDURES

Editing procedures of a given text variable X serve to convert
arithmetic values to numeric items. After an editing operation, the
numeric item obtained, if any, is right adjusted in the text frame
referenced by X and preceded by as many blanks as necessary to fill
the text frame. The final wvalue of the position indicator of X is
equal to X.length+1. Note that this increment is lost immediately if X
does not correspond to a variable.

A positive number 1is edited without a sign, a negative number is
edited with a minus sign immediately preceding the most significant
character. Leading nonsignificant zeros are suppressed, except
possibly in an EXPONENT.

If X references a constant text frame or potext, an error 1is caused.
Otherwise if the text frame is too short to contain the resulting

numeric item, the text frame into which the number was to be edited,
is filled with asterisks.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 125
TEXT HANDLING

The following editing procedures are available.

procedure putint(i); inteqer i;

The value of the parameter is converted ¢to an INTEGER-ITEM which
designates an integer equal to that value.

procedure putfix(r,n); long real r; integer n;

The resulting numeric item is an INTEGER-ITEM if n=0 or a DECIMAL-ITEM
with a FRACTION of n digits if n>0. It designates a number equal to
the value of r or an approximation to the value of 1, correctly
rounded to n decimal places. If n<0, a runtime error is caused.

procedure putreal(r,n); long real r; inteqer n;

The resulting numeric item is a REAL-ITEM containing an EXPONENT with
a fixed implementation defined number of characters. The EXPONENT is
preceded by a SIGN-PART if n=0, or by an INTEGER-ITEM with one digit
if n=t, or if n>1, by a DECIMAL-ITEM with an INTEGER-ITEM of 1 digit
only, and a fraction of n-1 digits. If n<0 a runtime error is caused.

In putfix and putreal, the numeric item designates that number of the
specified form which differs by the smallest possible amount from the
value of r or from the approximation to the value of r.

If the parameters to putfix (putreal) are such that some of the
printed digits will be without significance, zeros are substituted for
these digits (and no error condition is raised).

procedure putfrac(i,n); integer 1i,n;

The resulting numeric item is a GROUPED-ITEM with no decimal mark if
n<=0, and with a decimal mark followed by total of n digits if n>0.
Each digit group consists of 3 digits, except possibly the first one,
and possibly the last one following a decimal mark. The numeric item
is an exact representation of the number i * 10%**(-n).

The editing and de-editing procedures are oriented towards "fixed
field® text manipulation.

Example:

text tr, type, amount, price, payment;
integer pay, total;

tr:- blanks(80);

type:- tr.sub(1,5);

amount:~ tr.sub(20,5);

price:- tr.sub(30,6);

payment:- tr.sub(40,10);

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

126 ND-500 SIMULA REFERENCE MANUAL
TEXT HANDLING

if type = "order® then

begin pay:= amount.getint * price.getfrac;
total:= total + pay;
payment.putfrac(pay,?)

end
If tr initially holds the text

*order 1200 155.75 Lot
it will after editing contain

“order 1200 155.75 18 690.00 ...".

7.8 "DE-EDITING"™ PROCEDURES

A de-editing procedure of a given text variable X operates in the
following way:

1) The longest numeric item, if any, of a given form is located,
which is contained in X and contains the first character of
X. (Notice that leading blanks and tabs are accepted as part
of any numeric item.)

2) If no such numeric item is found, a runtime error is caused.

3) Otherwise the numeric item is interpreted as a number.

4) If that number is outside a relevant implementation defined
range, a runtime error is caused.

5) Otherwise an arithmetic value is computed, which is equal to
or approximates that number.

6) The position indicator of X is made one greater than the
position of the last character of the numeric item. Note that
this increment is lost immediately if X does not correspond
to a variable.

The following de-editing procedures are available.

inteqer procedure getint;

The procedure locates an INTEGER-ITEM. The function value is equal to
the corresponding integer.

long real procedure getreal;
The procedure locates a REAL-ITEM. The function value is equal to or
approximates the corresponding number. An INTEGER-ITEM exceeding a

certain implementation defined range may lose precision when converted
to real.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 127
TEXT HANDLING

lnteger procedure getfrac;

The procedure locates a GROUPED-ITEM. 1In its interpretation of the
CROUPED-ITEM the procedure will ignore any BLANKS and a possible
decimal point.

The function value is equal to the resulting integer.

Note: Thus “getfrac" 1is able to de-edit more general patterns than
those generated by "putfrac”.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

128 ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

CHAPTER 8

SEPARATE COMPILATION

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

129

130

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 131
SEPARATE COMPILATION

8 SEPARATE COMPILATION

SIMULA-source-module
= (external-head)
(program ! procedure-declaration ! class-declaration)

Program modules include compilable programs, procedure declarations,
and class declarations.

Example:

external b, ¢; ! external head of class e;
b ¢lass e(£f); ref (c)f;
beqgin external class d;
external procedure aproc;
ref (d) dref;
dref:- new 4;
aproc(dref);
end class e;

In SIMULA it 1s possible to compile procedure and class declarations
separately. This allows a modular programming style which is
especially important when a large system is developed by a group of
people. Equally important is the facility called <compatible
recompilation which allows for prototyping by means of programming
stubs.

By compiling modules one by one, it 1s also possible to construct
extremely large programs that would otherwise exceed the compilerxs
capacity. Since only the attributes of e.g. an external class will be
seen by the compiler, when it is compiling a program that references
that class, the possibility of table overflow is reduced.

8.1 INTRODUCTION TO SEPARATE COMPILATION

A source module may commence with a sequence of external declarations,
constituting the external head of that module. If the compiler finds
an external declaration of A, and A had an external head when it was
compiled, then the declarations of this external head are treated as
if they occurred immediately before the external declaration of A. It
may happen that an external declaration occurs more than once during
this implicit insertion; in that case the duplicates are checked by
the compiler to see whether these really describe exactly the same
procedure or class. If not, the compiler will report an error in the
module, otherwise the declaration is accepted (but naturally it is
treated only once).

Notice that this insertion of external heads is done recursively to
any depth.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

132 ND-500 SIMULA REFERENCE MANUAL
SEPARATE COMPILATION

8.1.1 THE ATTRIBUTE FILE

During compilat;on of a procedure (class), the compiler will generate

two files: an object file containing the executable result of the
compilation (in NRF), and an attribute file which gives certain

characteristics of the procedure or class.

The attribute file contains information which makes it possible to
check occurrences in other modules of the procedure (class) against
the declaration given, without having to process the complete source
text of the module each time an external declaration referring to it
OCCUrS.

This includes information on the externally visible attributes of the
entity. That is information about the parameters (the sequence, type,
and transmission mode), and for procedures the possible resulting
type. For classes all,additional attributes also occur, specified in
the same manner. Thus all information necessary to check e.g. a call
of an external procedure is at hand.

In addition certain internal information is stored; most important is
the check code. This code is a unique identification of the module
generated by the compiler, i.e. no two check codes will ever be equal.
When an external declaration occurs explicitly in a source module, the
check code 1s read from the attribute file, and recorded in both the
object file and the attribute file of the current compilation.

When an external declaration 1is brought into the compilation
implicitly, as described above, the check code 1is read from the
attribute file and compared to the code previously recorded; these two
check codes must be the same. If this is not the case, the attribute
file has been changed e.g. by an incompatible recompilation.
The following example should demonstrate some of the points made
above:
Compilation 1, to attribute file CATTR:

CLASS ¢; BEGIN ... END;
Compilation 2, to attribute file DATTR:

EXTERNAL CLASS c="CATTR";
c CLASS d; BEGIN ... END;

Compilation 3, to attribute file EATTR:
EXTERNAL CLASS d="DATTR";
! Class ¢ is implicitely brought in. It would,

however, do no harm if ¢ was also declared. ;
d CLASS e; BEGIN ... END;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 133
SEPARATE COMPILATION

Compilation 4, to attribute file FATTR:

EXTERNAL CLASS c="CATTR";
c CLASS f; BEGIN ... END;

Compilation 5, a main program:

BEGIN

EXTERNAL CLASS e="EATTR"

EXTERNAL CLASS f—'FATTR'

! classes ¢ and 4 are implicitely brought in.
¢ is brought in "twice®, but these are
considered as the same class. ;

REF(c) rc;

rc:-NEW e; rc:-NEW f; ! are both legal;

END;

If C is recompiled (e.g. because it was changed), then all other
modules may have to be recompiled (see next section). If, however, D
is recompiled, then only class E and the program are candidates for
recompilation.

8.1.2 COMPATIBLE RECOMPILATION

The SIMULA Compiler may be instructed to recompile a procedure {(class)
by the command: RECOMPILE. If the recompilation shows that the
procedure (class) is compatible with the procedure (class) of the
previous compilation, then other classes/procedures or programs
referring to it by an external declaration need not be recompiled.

The following compatibility rules apply to two versions, here called
0ld-CP and new-CP, of a procedure(class) CP:

1) New-CP and old-CP are compatible if they have the same name (CP),
the same type (if procedure) and the same prefix chain (if

class). Otherwise they are incompatible.

2) New-CP and 0ld-CP are compatible if they have (textually) the
same external head. Otherwise they are incompatible.

3) New-CP and old-CP are compatible if they have the same parameters
and the same local attributes: procedures local to new-CP and
0ld~CP must have the same names and the same parameters, and
classes local to new-CP and old-CP must have the same name, the
same parameters, and the same attributes. "Same" means here: the
same names, kinds, and types, and in the same order. Otherwise

they are incompatible.

Observe that a label local to a class body is an attribute of the
class. This wmeans that new-CP and o0ld-CP (and possible local
classes) must have the same labels to be compatible. The labels
within one class must appear in the same order, but they need not
designate the same statements. Note that quantities local to sub-
blocks, prefixed blocks and connection blocks need not be the

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

124 . ND-500 SIMULA REFERENCE MANUAL
SEPARATE COMPILATTION

same.

4) New-CP and old-CP are compatible if they have the same nesting of
FOR-statements in the procedure{class) body. In other words, the

maximum nesting depth at the outermost level cannot have been
changed between o0ld-CP and new-CP. Otherwise they are
incompatible. FOR-statements within local subblocks, prefixed
blocks and connection-blocks need pot have the same nesting
depth.

A way to avoid incompatibilities is to enclose each FOR-statement
in a dummy block or to enclose the statement part of the class
body in a dummy block. The last way can be used only when the
labels in the statement part of the class are not used as
attributes of the class.

5) Exactly the same rule applies to nested INSPECT-statements as
applies to nested FOR-statements (i.e the maximum nesting depth
at the outermost level cannot have been changed between o0ld-CP
and new-CP). The same means of avoiding incompatibilities apply
as well.

6) The occurrence of 'this-CP' affects the compatibility of old-CP
and new-CP as follows:

r—
This-CP
occurs in: The two
- versions are:
0ld-CpP new-CP
yes yes compatible
yes no compatible
no yes incompatible
no no compatible

If 'THIS CP' does not occur in old-CP then it may not occur in
new-CP. The reason for this is that CP may be used as a prefix to
a block. Thus introducing ‘'THIS CP' 1in" new-CP, without its
occurring in old-CP, would make it an illegal block prefix.

If recompilation is compatible, the previous attribute file is left
unchanged and is used for the recompiled procedure (class). No new
attribute file is produced, and thus no new check code is generated.

If a recompilation 1is incompatible, then the cause for this is
reported. No output file will be generated. (The criterion used to

determine whether two modules are compatible or not is that they have
the same attribute file contents.)

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 135
SEPARATE COMPILATION

8.2 EXTERNAL DECLARATIONS

external-head
= external-declaration (* external-declaration *)

external-declaration
= external-procedure-declaration
! external-class-declaration

An external declaration is either an external procedure declaration,

treated on page 135, or it is an external class declaration, treated
on page 136.

The external declaration is a substitute for a complete introduction
of the corresponding source module, including its external head. In
the case where multiple but indentical external declarations occur as
a consequence of this rule, this declaration will be incorporated only
once.

The occurrence of a standard identifier within a source module refers
to the declaration of that identifier within the class ENVIRONMENT,
implicitly prefixing the main program.

Note: If a «class identifier is referenced before the body of a
separately compiled procedure or class declaration, or in a
program block prefix, then this identifier must be declared in
the external head.

8.3 EXTERNAL PROCEDURE DECLARATION

external-procedure-declaration
= “external” (kind)} (type) ‘“procedure”
external-list
! *external® kind ‘“procedure"
external-item external-specification

kind
= identifier

external-specification

= "is” procedure-declaration

where "kind" is an identifier that indicates the source language in
which the procedure referred to is programmed, and “"type" is the type
of the procedure referred to.

If "kind” is omitted, the source language of the procedure is SIMULA.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

136 ND-500 SIMULA REFERENCE MANUAL
SEPARATE COMPILATION

If a procedure declaration occurs (preceded by the keyword IS), its
procedure body must be empty, since it is given in a separate (non-
SIMULA) module.

The procedure heading will determine the procedure (or function)
identifier to be used within the source module in which the external
declaration occurs, as well as the type, order and transmission mode
of the parameters. This information is derived automatically by the
compiler from the file system in case the first form above is given.

A non-SIMULA procedure cannot be used as an actual parameter
corresponding to a formal procedure.

8.4 EXTERNAL CLASS DECLARATION

external-class-declaration
= "external" “class"™ external-list

An external declaration of a separately compiled class implicitly
declares all classes in its prefix chain (since these will be declared
in the external head of the class in question).

8.5 MODULE IDENTIFICATION

external-list
= external-item (* "," external-item *)

external-item
= identifier ["=" external-identification)

external-identification
= string

The identifier given in the external-item must be the same as the
identifier of the corresponding class or procedure. If the optional
string is given, it is the name of the SINTRAN file on which the
module resides.

Note: At this point ND-500 SIMULA deviates from the standard
in that an external non-SIMULA procedure declaration
(i.e. where <kind> 1is non-empty) cannot occur in an
external head, but only within modules.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 137

SEQUENCING

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

138

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 139
SEQUENCING

9 SEQUENCING

8.1 BLOCK INSTANCES AND STATES OF EXECUTION

The constituent parts of a program execution are dynamic instances of
blocks, i.e. sub-blocks, prefixed blocks, connection blocks and class

bodies.

A block instance is said to be "local to® the block which (directly)
contains its describing text. E.g. an object of a given class is local
to the block instance which contains the class declaration. The
instance of the outermost block is local to no block instance.

At any time, the "program sequence control®", PSC, refers to that
program point within a block instance which 1is currently being
executed. For brevity we say that the PSC 1s “positioned" at the
program point and is ®"contained” in the block instance.

The entry into any block invokes the generation of an instance of that
block, whereupon the PSC enters the block instance at its first
executable statement. If and when the PSC reaches the final end of a
non-class block instance (i.e. an instance of a prefixed block, a sub- ~
block, a procedure body or a connection block) the PSC returns to the
program point immediately following the statement or expression which
caused the generation of the block instance.

A block instance 1is at any time in one of four states of execution:
"attached”, "detached®, “resumed” or "terminated”.

A non-class block instance is always in the state attached. The
instance is said to be "attached to" the block instance which caused
its generation. Thus, an instance of a procedure-body is attached to
the block instance containing the corresponding procedure-statement or
function-designator. A non-class, non-procedure block instance 1is
attached to the block instance to which it is local. The outermost
block instance is attached to no block instance. If and when the PSC
leaves a non-class block instance through its final end, or through a
goto-statement, the block instance ceases to exist.

A class object is initially in the attached state and said to be
attached to the block instance containing the corresponding object
generator. It may enter the detached state through the execution of a
detach statement (see page 146). The object may reenter the attached
state through the execution of a call statement (see page 147),
whereby it becomes attached to the block instance containing the call
statement. A detached object may enter the resumed state through the
execution of a resume statement (see page 148). If and when the PSC
leaves the object through its final end or through a goto statement,
the object enters the terminated state. No block instance is attached
to a terminated class object.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

i
140 . ND-500 SIMULA REFERENCE MANUAL
SEQUENCING

The execution of a program which makes no use of detach, call or
resume statements is a simple nested structure of attached block
instances.

Whenever a block instance ceases to exist, all block instances local
or attached to it also cease to exist. The dynamic scope of an object
is thus limited by that of its class declaration.

The dynamic scope of an array declaration may extend beyond that of
the block instance containing the declaration, due ¢to the call by
reference parameter transmission mode being applicable to arrays.

3.2 QUASI-PARALLEL SYSTEMS

A quasi-parallel system is identified by any instance of a sub-block
or a prefixed block, containing a local class declaration. The block
instance which identifies a system is called the “system head".

The outermost block instance identifies a system referred to as the
"outermost system”.

A quasi-parallel system consists of "components®. In each system one
of the components is referred to as the "main component® of the
system. The other components are called "object components”.

A component is a nested structure of block instances one of which,
called the "component head", identifies the component. The head of the
main component of a system coincides with the system head. The heads
of the object components of a system are exactly those detached or
resumed objects which are local to the system head.

At any time exactly one of the components of a system is said to be
"operative®. A non-operative component has an associated "reactivation
point® which identifies the program point where execution will
continue if and when the component is activated.

The head of an object component is in the resumed state if and only if
the component is operative. Note that the head of the main component
of a system is always in the attached state.

In addition to system components, a program execution may contain
"independent object components" which belong to no particular system.
The head of any such component is a detached object which is local to
a class object or an instance of a procedure body, i.e. which is not
local to a system head. By definition, independent components are
always non-operative.

The sequencing of components is governed by the detach, call and
resume statements, defined on page 146 et seq. All three statements
operate with respect to an explicitly or implicitly specified object.
The following two sections serve as an informal outline of the effects
of these statements.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

'
ND-500 SIMULA REFERENCE MANUAL 141
SEQUENCING

9.2.1 SEMI-SYMMETRIC SEQUENCING: OETACH - CALL

In this section the concept of a quasi-parallel system is irrelevant.
Consequently we only consider object components, making no distinction
between components which belong to a system and those which are
independent.

An object component is created through the execution of a detach
statement with respect to an attached object, whereby the PSC returns
to the block instance to which the object is attached. The object
enters the detached state and becomes the head of a new non-operative
component whose reactivation point is positioned immediately after the
detach statement.

The component may be reactivated through the execution of a call
statement with respect to its detached head, whereby the PSC is woved
to its reactivation point. The head reenters the attached state and
becomes attached to the block instance containing the call statement.
Formally, the component thereby loses its status as a component.

9.2.2 SYMMETRIC COMPONENT SEQUENCING: DETACH - RESUME

In this section we only consider components which belong to a quasi-
parallel system.

Initially, i.e. upon the generation of a system head the main
component is the operative and only coamponent of the systenm.

Non-operative object components of the system are created as described
in the previous section, i.e. by detach statements with respect to
attached objects local to the system head. i

Non-operative object components of the system may be activated by
call-statements, whereby they lose their component status, as
described in the previous section.

A non-operative object component of the system may also be reactivated
through the execution of a resume statement with respect to its
detached head, whereby the PSC is moved to its reactivation point. The
head of the component enters the resumed state and the component
becomes operative. The previously operative component of the system
becomes non-operative, its reactivation point positioned immediately
after the resume statement. If this component is an object component
its head enters the detached state.

The main component of the system regains operative status through the
execution of a detach statement with respect to the resumed head of
the currently operative object component, whereby the PSC is moved to
the reactivation point of the main component. The previously operative
component becomes non-operative, its reactivation point positioned
immediately after the detach statement. The head of this component
enters the detached state.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

142 ' ND-500 SIMULA REFERENCE MANUAL
SEQUENCING

Observe the symmetric relationship between a resumer and its resumee,
in contrast to that between a caller and its callee.

9.2.3 DYNAMIC ENCLOSURE AND THE OPERATING CHAIN

A block instance ¥ is salid to be "dynamically enclosed® by a block
instance Y if and only if there exists a sequence of block instances

X=120,21,, Zn=¥Y (n>=0)
such that for i= 1,2,...,n:
a) Zi-1 is attached to Zi, or

b) 2i~1 1is a resumed object whose associated system head is
attached to 2i.

Note that a terminated or detached object is dynamically enclosed by
no block instance except itself.

The sequence of block instances dynamically enclosing the block
instance currently containing the PSC is called the *operating chain®.
A block instance on the operating chain is said to be "operating®. The
outermost block instance is always operating.

A component 1s said to be operating if the component head is
operating.

A system 1s said to be operating if one of 1its components is
operating. At any time, at most one of the components of a system can
be operating. Note that the head of an operating system may be non-
operating.

An operating component is always operative. If the operative component
of a system is non-operating, then the system is also non-operating.
In such a system, the operative component is that component which was
operating at the time when the system became non-operating, and the
one which will be operating if and when the system again becomes
operating.

Consider a non-operative component C whose reactivation point is
contained in the block instance X. Then the following is true:

1) X is dynamically enclosed by the head of C.

2) X dynamically encloses no block instance other than itself.
The sequence of block instances dynamically enclosed by the head of C
is referred to as the ‘reactivation chain® of C. All component heads
on this chain, except the head of ¢, identify (non-operating)

operative components. If and when C becomes operating, all block
instances on its reactivation chain also become operating.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 143
SEQUENCING

Example:

1 begin comment S1;

2 ref(c1) X1;

3 class C1;

4 begin procedure P1; detach;
5 P1

6 end C1;

7 ref(C2) X2;

8 class C2;

9 begin procedure P2;

10 begin detach;

11 *)

12 end P2;

13 begin comment system S2;
14 ref(C3) ¥3;
15 class C3;

16 begin detach;
17 P2

18 end C3;

19 X3:- new C3;
20 resume (X3)
21 end S2

22 end C2;

23 X1:- new C1;
24 X2:- new C2;
25 call(X2)

26 end S1;

The execution of this program 1is explained below. In the figures,
system heads are indicated by squares and other block instances by
circles. Vertical bars connect the component heads of a system, and
left arrows indicate attachment. Reactivation point is abbreviated RP.

Just before, and just after the execution of the detach statement 1in
line 4, the situations are:

Figqure 9.1:

S1 PSC
Figure 9.2:

S 16— PSC

X1 P1 RP of X1

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

144 ND-500 SIMULA REFERENCE MANUAL
SEQUENCING

Before and after the detach in line 16:

Eigure 9.3:
S1 —4—@-«— 52—4—@-4— PSC
OOStEE
Fiqure 9.4:

S1—4—®—(— S2f—— PSC

@—4—“ of X3
(e e

Figure 9.4 also shows the situation before the resume in line 20.
After this resume:

Fiqure 9.5:

RP of X1

S1—¢ @ % S2—— RP of main component of S2

PSC

ND-60.208.1 EN

ND-500 SIMULA REFERENCE MANUAL 145
SEQUENCING

Before and after the detach in line 10:

Fiqure 9.6:

S1| X2 S2t—— RP of main component of S2

(Bt

Fiqure 9.7:

S1—— PSC
@ ° RP of X1
\\fi/ < S2 }— RP of main component of 52
X3 P2 RP of X2

Note that X3 is still the operative component of S2 and does not have
a reactivation point of its own. Figure 9.7 also shows the situation
before the call in line 25. After this call, the situation in figqure
9.6 is re-established. If, however, the call in line 25 is replaced by
a "resume(¥X2)“ the following situation arises:

Fiqure 9.8:

S1p—— RP of main component of S1

@

,XZ ¢ ¢ RP of main component of S§2

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

146 ND-500 SIMULA REFERENCE MANUAL
SEQUENCING

If now a "resume(X1)® is executed at * in line 11, the PSC is moved to
the "RP of X1" in figure 9.8, leaving an "RP of X2" at the former PSC,
If instead a "detach® is executed, figure 9.8 leads back to figure
9.7.

9.3 QUASI-PARALLEL SEQUENCING

A quasi-parallel system is created through entry into a sub-block or a
prefixed block, which contains a local class declaration, whereby the
generated instance becomes the head of the new system. Initially, the
main component is the operative and only component of the system.

9.3.1 THE DETACH STATEMENT

Any class that has no (textually given) prefix will by definition he
prefixed by a fictitious class whose only attribute is:

procedure detach; ... ;

Thus, every class object or instance of a prefixed block has this
attribute. Consider the effect "of an invocation of the detach
attribute of such a block instance X:

If X 1s an instance of a prefixed block the detach statement has no
effect.

If X is a class object, the following cases arise:

1) X is an attached object. If X is not operating the detach
statement constitutes an error.

If X is operating, the effect of the detach statement is:

a) X becomes detached and thereby (the head of) a new
non-operative object component, its reactivation
point positioned immediately after the detach
statement. As a consequence, that part of the
operating chain which is dynamically enclosed by X
becomes the (non-operating) reactivation chain of X.

b) The PSC returns to the block instance to which X was
attached and execution continues immediately after
the associated object generator or call statement
(see page 147).

If X is local to a system head, the new component becomes a
member of the associated system. It is a consequence of the
language definition that, prior ¢to the execution of the
detach statement, X was dynamically enclosed by the head of
the operative component of this system. The operative
component remains operative.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL . 147
SEQUENCING

2) X is a detached object. The detach statement then constitutes
an error.

3) X 1is a resumed object. X is then (the head of) an operative
system component. Let S be the associated system. It is a
consequence of the lanqguage definition that X must be
operating. The effect of the detach statement is:

a) X enters the detached state and becomes non-
operative, its reactivation point positioned
immediately after the detach statement. As a
consequence, that part of the operating chain which
is dynamically enclosed by X becomes the (non-
operating) reactivation chain of X.

b) The PSC 1is moved to the current reactivation point
of the main component of S, whereby this nmain
component becomes operative and operating. As a
consequence, all block instances on the reactivation
chain of the main component also become operating.

4) X is a terminated object. The detach statement then
constitutes an error.

9.3.2 THE CALL STATEMENT
procedure call(x); ref (...) Xx; e

“Call* 1is formally a procedure with one object reference parameter
qualified by a fictitious class including all classes. Let Y denote
the object referenced by a call statement.

If Y is terminated, attached or resumed, or Y == none, the call
statement constitutes an error.

If Y is a detached object, the effect of the call statement is:
1) Y becomes attached to the block instance containing the call
statement, whereby Y loses its status as a component head. As
a consequence the system to which Y belongs (if any) loses
the associated component.
2) The PSC is moved to the (former) reactivation point of Y. As

a consequence, all block instances on the reactivation chain
of Y become operating.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

148) ND-500 SIMULA REFERENCE MANUAL
SEQUENCING

9.3.3 THE RESUME STATEMENT
procedure resume(x); ref (...) x; ;

"Resume” is formally a procedure with one object reference parameter
qualified by a fictitious class including all classes. Let Y denote
the object referenced by a resume statement.

If Y is not local to a system head, i.e. if Y is local to a class
object or an instance of a procedure-body, the resume statement
constitutes an error.

If Y is terminated or attached, or Y==none, the resume statement
constitutes an error.

If Y is a resumed object, the resume statement has no effect. (It is a
consequence of the language definition that Y must then be operating.)

Assume Y is a detached object being (the head of) a non-operative
system component. Let S be the associated system and let X denote (the
head of) the current operative component of S. It is a consequence of
the lanqguage definition that X must be operating, and that X is erther
the main component of S or local to the head of S. The effect of the
resume statement 1is:

1) X becomes non-operative, . its reactivation point positioned
immediately after the resume statement. AsS a consequence,
that part of the operating chain which 1is dynamically
enclosed by X becomes the (non-operating) reactivation chain
of X. If X is an object component 1its head enters the
detached state.

2) The PSC is moved to the reactivation point of Y, whereby Y
enters the resumed state and becomes operative and operating.
As a consequence, all block instances on the reactivation
chain of Y also become operating.

9.3.4 0BJECT "ENOD°

The effect of the PSC passing through the final end of a class object
is the same as that of a detach with respect to that object, except
that the object becomes terminated, not detached. As a consequence it
attains no reactivation point and loses its status as a component head
(if it has such status).

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 149
SEQUENCING

9.3.5 GOTO STATEMENTS

A designational-expression defines a program point within a block
Lnstance.

Let P denote the program point identified by evaluating the
designational-expression of a goto-statement. Let X be the block

instance containing P, and let Y denote the block instance currently
containing the PSC.

Consider the execution of the goto-statement:
1) If X equals Y the PSC is moved to P.

2) Otherwise, if Y 1is the outermost block instance the goto-
statement constitutes an error.

3) Otherwise the effect is that of the PSC passing through the
final end of Y, after which the process is immediately
repeated from 1.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

150

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

152

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 153
THE STANDARD ENVIRONMENT

10 THE STANDARD ENVIRONMENT

The purpose of the environmental class is to collect all procedures
and classes available to all programs. It contains procedures for
mathematical functions, text generation, random drawing etc.

General structure:

class ENVIRONMENT;
begin character CURRENTLOWTEN, CURRENTDECIMALMARK;

! Basic operations --------------—mce——moommeooaoo ;
! Procedures mod, rem, abs, sign, entier, epsilon. ;

Text utilities ------c-emmemmm e
Procedures copy, blanks, char, isochar, rank, ;
isorank, digit, letter, upc, lowc, lowten, ;
decimalmark, upcase, lowcase. -
(last 2 only if not attr)

I Scheduling ---=-=--sm-mmmmm e e
! Procedures call, resume ;

| Mathematical functions ---------c=momommccccco ;
! Procedures sqrt, sin, cos, tan, cotan, arcsin, ;
! arccos, arctan, arctan2, sinh, cosh, tanh, ln, ;
! log10, exp, pi. ;

! Extremum functions -------------------cooocooooo ;
! Procedures max, min, maximum, minimum. ;

! Environmental enquiries ------------------co-o-o- ;
! Procedures maxrank, maxint, maxshortint, minint, ;
! minshortint, maxlongreal, maxreal, minreal, H
! minlongreal, simulaid, systemid, runid, ;
! sourceline. ;

! EXror control -=-=--c-ecemmmm e
! Procedures enterdebug, error. ;

! Array quantities —------ceecmmmmeceee e
! Procedures dimensions, upperbound, lowerbound. ;

! Random drawing ~-----—---e-cemrcmmmm e nmeeae
! Procedures draw, randint, uniform, normal, ;
! negexp, Poisson, Erlang, discrete, linear, ;
! histd, nextrandom, unique. ;

! Calendar and timing utilities ----=-=~ceccecocaao—u-.
! Procedures date_time, cptime, clocktime. ;

! Miscellaneous utilities -----------=-=--cooc-aoomy
| Procedures histo, simple. ;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

154 ND-500 SIMULA REFERENCE MANUAL
THE STANDARD ENVIRONMENT

! System class for list handling -------ec-ccacaaa-;
! Class simset. ;

! System class for discrete event modelling -------;
! Class simulation. ;

CURRENTDECIMALMARK:= '.‘;
CURRENTLOWTEN:= 'E’

end ENVIRONMENT;

The class "ENVIRONMENT" defines basic, general purpose facilities
available to all programs. The identifier “*ENVIRONMENT® 1is not

accessible to the user's program.

10. 1 BASIC OPERATIONS

integer procedure mod({i,j); integer i,3;
begin inteqer res;
res:= i - (i1//3)*3;
mod:= if res = O then O else
if sign(res) <> sign(j) then res+j
glse res

end mod;

integer procedure rem(i,j); integer i,j;
rem:= 1 -~ (i1//3)%3;

{type> procedure abs(i); (type> 1i;
abs:= if i >= O then i else -i;

inteqer procedure sign(i); (typed i;
sign:= if i > O then 1 else
if i ¢ O then -1 else O;

integer procedure entier(r); real r;
begin inteqer 3;

j:= r;

entier:= if j > r then j-1 else j
end entier;

<(type> procedure epsilon{e,up); <type)> e; Bgolean up;

The procedure “mod" returns the mathematical modulo value of its
parameters. The procedure °"rem" returns the remainder of an integer
division.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 155
THE STANDARD ENVIRONMENT

The procedure “abs®" returns the absolute value and the result is of
the same <(type) as its parameter (e.g. short inteqger, inteqer, regl or
long real).

The procedure "sign”" returns an integer zero value if the parameter is
zero, ainus one for negative parameters, otherwise plus one.

The procedure "entier® returns the integer part of a real item, the

value always being less than or equal to the parameter. Thus,
*entier(1.8)" returns the value 1, while "entier(-1.8)" returns -2.

The procedure "epsilon(x,tIye)® returns:

if x is)= 0 the smallest (long) real value which is
greater than x,

ifxis <0 the greatest (long) real value which is
less than x.
Similarly, “"epislon(x,false)" returns:

ifxis >0 the greatest (long) real value which is
less than x,

if x is <= 0 the smallest (long) real value which is
qreater than x.

10.2 TEXT UTILITIES

text procedure copy{t); text t; :

text procedure blanks(w); integer w; ;
character procedure char(i); integer i; ;
character procedure isochar(i); integer i; ;
inteqer procedure rank(c); character ¢; i
inteqer procedure isorank(c); character c;
Boglean procedure digit(c); character c;

Boolean procedure letter(c); character c;
character procedure upc(c); character c;
character procedure lowc(c); character c;

character progedure lowten(c); character c¢;
if ... ! illeqal character;... then

error(®..." ! Lowten error ;) else
begin lowten:= CURRENTLOWTEN;
CURRENTLOWTEN:= ¢
end lowten;

character procedure decimalmark(c); character c;
if ¢ <> '"." and then ¢ <> ',' then

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

156 ND-500 SIMULA REFERENCE MANUAL
THE STANDARD ENVIRONMENT

error("...* ! Decimalmark error ;) else
beqin decimalmark:= CURRENTDECIMALMARK;
CURRENTDECIMALMARK: =
end decimalmark;

text procedure upcase(t); text t; only if not
beqin text s; .accepted as attribute
t.setpos(1); upcase:- s:- t;
while t.more do t.putchar(upc(s.getchar))
end upcase;
text procedure lowcase(t); text t;
begin fext s;
t.setpos(1); lowcase:- s:- t;
while t.more 4o t.putchar(lowc(s.getchar))
end lowcase; N

‘Procedures copy and blanks are described on page 122.

The procedure "char® accepts a parameter in the range (O,maxrank},
returning the corresponding internal character value. Other parameter
values constitute a run time error.

The procedure ‘isochar® returns the internal character value
corresponding to the indicated charac¢ter in the ISO 646-1973 set.

Conversely, the procedure “rank" accepts a character parameter
returning its corresponding internal integer value.

Likewise, the procedure "isorank® returns the ordinal number in the
IS0 646-1973 character set.

The procedure "digit®" returns the value frye if the parameter is a
digit (0..9). .

The procedure "letter" returns the value trye if the parameter is a
letter (a..z or A..2).

The procedure “upc” ("lowc®) returns the given letter character in its
upper {lower) case equivalent.

The procedure “lowten® changes the value of the current lowten
character to that of the parameter. The previous value is returned.
Illegal parameter values will constitute a runtime error. Illegal
values are digits, plus-sign (+), minus-sign (-), non printable
characters (<= isochar(<blank>)), (ISO code 127), period ('.')
and comma (',').

Correspondingly the procedure "decimalmark” changes the current value
of the decimal point used in (de-)editing procedures (cf. pages 124 to
127). Legal parameter values are '.' and ','

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 157
THE STANDARD ENVIRONMENT

10.3 MATHEMATICAL FUNCTIONS

real-type procedure sqrt(r); real-type r; ...;

real-type procedure sin(r); real-type r; ...;
real-type procedure cos(r); real-type r; ;
real-type procedure tan(r); real-type r;

real-type procedure cotan(r); real-type r; .3
real-type procedure arcsin(r); real-type r; .
real-type procedure arccos(r); real-type r; o
real-type procedure arctan{(r); real-type r; .3
real-type procedure arctan2(y,x); real-type y.,X;..;
real-type procedure sinh(r); real-type r; ;
real-type procedure cosh(r); real-type r; ;
real-type procedure tanh(r); real-type r; o
real-type procedure ln(r); real-type r;

real-type procedure logi0(r); real-type r; .
real-type procedure exp(r); real-type r; .

long real procedure pi; pi:= 3.14159_26535_89793....&&0;

These procedures return long real results whenever a parameter 1is of
this type. Otherwise a real type result is returned.

All procedures return floating point approximations to the associated
mathematical functions. Their exact definitions (concerning precision,
allowed parameter values etc.) are implementation defined. It should
be expected, however, that the procedures should return good
approximations to the exact mathematical results.

The procedure “sqrt® returns the square root of the parameter value.
Parameter values less than zero constitute a run time error.

The trigonometric functions deal with angles expressed in radians.

The procedure "arctan® returns the arctan value of the parameter (i.e.
the function inverse to °tan'). The result is in the range (0,pi/2)
for non-negative parameters and in the range (-pi/2,0) for negative
parameters.

The procedure "arctan2® accepts two parameters, y and x. The result is
in the range(-pi,pi) and a negative value is returned whenever y is
negative. Positive y values always result in a postive result, while a
zero value returns zero if x is positive and pi if x is negative. If
both y and x are zero, a runtime error occurs. (For positive x, in
BOosSt cases arctan2(y,x) equals arctan{(y/x).)

In addition, the procedure "pi® returns the long real (approximation)
value of the mathematical constant °“pi".

ND-60.208.1 EN

onny. Qddene for Sintran Data.© 2010

158 ND-500 SIMULA REFERENCE MANUAL
THE STANDARD ENVIRONMENT

10.4 EXTREMUM FUNCTIONS

(type> procedure max(i1,i2); | (type)> it,12; ;
(type> procedure min(it,1i2); Ctype> i1,12; ;
integer procedure maximum(arr); (type) array arr; ;
integer procedure minimum(arr); (type)> array arr; ;

The procedure "max® ("min®) returns the maximum (minimum) value of the
two parameters. Legal ¢types are c¢haracter, text, real-type and
integer-type. The resulting type conforms to the rules on page 59.

The procedure "maximum® returns the index of the first element in the
one~-dimensional array parameter which is greater than or equal to all
other elements in the array. It is considered an error if ¢the array
has more than one dimension or if the array type is not any of the
types (long) real, (short) integex, character or text.

Correspondingly, the procedure “minimum" returns the index of the
first element that is less than or equal to all other elements of the

array parameter.
10.5 ENVIRONMENTAL ENQUIRIES

'ntege procedure maxrank; ;
inteqer procedure maxint;
short integer procedure maxshortint; ;

integer procedure minint;
short inteqer procedure lxnshottxnt ;

long real procedure maxlongreal; ;
real procedure maxreal; H
real procedure minreal; H
long real procedure minlongreal; ;

text procedure simulaid; H
text procedure systemid; H
text procedure runid; = H

inteqer procedure sourceline; H

The procedures “max<type)" and “min<type)” return the maximum and
minimum possible value for each type, respectively.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 159
THE STANDARD ENVIRONMENT

stype) Max Min
short integqexr maxshortint minshortint
integer maxint minint
long real maxlongreal minlongreal
real maxreal minreal

The procedure °maxrank® returns the maximum allowed argument to the
procedure °“rank”.

The procedure “"simulaid® returns a reference to a new constant text
frame with the following contents:

"(SIMULA system identification>".

The text is intended to contain information on the version number and
date for the currently executing SIMULA implementation.

The procedure ‘systemid” returns a reference to a new constant text
frame with the contents:

"¢(site identification>!!!<(name of 0S>!!!{<(CPU manufacturer and type)>".

The first part is intended to be the identification of the
installation (typically an organizational name), the second part the
name of the currently executing operating system and the third part
the make and type name of the currently executing CPU (e.g. “IBM-
370/158", “"DEC-RL1091"). It 1is recommended that the manufacturer's
name be followed by a minus sign.

The procedure "runid” returns a constant text frame with contents:
Cuser id>!!!<¢job id>!!!<account id>!!!<program id>".

The <(user id> part contains the user's name on the system (it may on
some sSystems be identical to the <account id>). The <job id)> part is
the current job number (session number). On single-user systems this
RgES\éﬂ!‘YdeRh gfERHon?”fhé“‘fg?b}gfaidld?aé&Eh H&Sl&°8§ﬁé§iﬁ’.‘€h “‘@2@&
<) executing program (bn dome systéms t 1s may be equivalent to
the identification of the external file in which the program is
stored.

The procedure “sourceline” returns an integer indicating the source
line number where the procedure was called. The interpretation of this
number is implementation defined; it will normally indicate the source
line number as defined within the source file used when the calling
code was compiled.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

160 ND-500 SIMULA REFERENCE MANUAL
THE STANDARD ENVIRONMENT

10.6 ERROR CONTROL

procedure error(t); text t; -
begin ... display text °t" and stop program...
end error;

Boolean procedure enterdebug(continue);
Boolean continue; ;

The procedure “"error® stops the execution of the program as if a
runtime error has occurred and present the contents of the text
parameter on the diagnostic channel (normally ¢the controlling
terminal).

The procedure "enterdebug" invokes a system utility for interactive
examination of the program. If the parameter °"continue® is gtrue the
user will be allowed to continue program execution afterwards. The
procedure returns the result false if the invocation failed.

10.7 ARRAY QUANTITIES

inteqger grocedur dimensions(a); (type) array a;
dimensions:= ;

integer procedure upperbound(a,i); <(type> arravy a;
integer i; upperbound:= ;

integexr procedure lowerbound(a,i); <type)> arrav a;
integer i; lowerbound:= :

The procedure "dimensions” returns the number of indices of the actual
array parameter. .

The procedures "upperbound” and “lowerbound” return the upper and
lower bounds respectively of the dimensions of the given array

corresponding to the given index. An index value less than one or
greater than "dimensions(..)® constitutes a runtime error.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 161
THE STANDARD ENVIRONMENT

10.8 RANOOM ORANING

10.8. 1 PSEUOO-RANOOM NUMBER STREAMS

All random drawing procedures of SIMULA 67 are based on the technique
of obtaining "basic drawings® from the uniform distribution in the
interval <0, 1>.

A basic drawing replaces the value of a specified jnteger variable,
say U, by a new value according to an implementation defined

algorithm.

As an example, the following algorithm may be suitable for binary
computers:

U(i+1) = remainder ((U(i) * S5%*(2*p+1)) // 2**n)

where U(i) is the i'th value of U, n is an integer related to the size
of a computer word and p is a positive integer. It can be proved that,
if U(0) is a positive odd integer, the same is true for all U(i) and
the sequence U(0), O(1), U({2), ... is cyclic with period 2**n-2. (The
last two bits of U remain constant, while the other n-2 take on all
possible combinations). Thus there are two sequences - one in the
range (1:2**n-3) and the other in (3:2**n-1).

It is a property of this algorithm that any successor to a stream
number U(i), e.g. U(i+m), can be computed using modular arithmetic in
2*log(m) steps.

The real numbers u(i) = U(i) * 2**(-n) are fractions in the range
<0,1%>. The sequence u(1), u(2), ... is called a *stream" of pseudo-
random numbers, and u(i) (i = 1,2, ...) is the result of the 1i'th
basic drawing in the stream U. A stream is completely determined by
the initial value U(0) of the corresponding integer variable.
Nevertheless, it is a *“good approximation® to a sequence of truly
random drawings.

By reversing the sign of the non-zero initial value U(O) of a stream
variable, the antithetic drawings 1-u(1), 1-u(2), ... should be
obtained. In certain situations it can be proved that means obtained
from samples based on antithetic drawings have a smaller variance than
those obtained from uncorrelated streams. This can be used to reduce
the sample size required to obtain reliable estimates.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

162 ND-500 SIMULA REFERENCE MANUAL
THE STANDARD ENVIRONMENT

10.8.2 RANDOM DRANING PROCEDURES

The following procedures all perform a random drawing of some kind.
Procedures “draw", “‘randint®, “uniform*, “negexp”, "discrete”,
“linear® and “histd" always perform the operation by means of one
single basic drawing, i.e. the procedure has the side effect of
advancing the specified stream by one step. The necessary type
conversions are effected for the actual parameters, with the exception
of the last one. The latter must always be an jnteqger variable
specifying a pseudo-random number stream. Note, that it must not be a
procedure parameter transferred by pame.

1) Boglean procedure draw (a,U); pame U; real a; integer U;

The value is frye with the probability a, false with the
probability 1 - a. It is always true if a >= 1 and always

false if a <= 0.
2) integer procedure randint (a,b,U}; pname U; integer a,b,U;

The value is one of the integers a, a+t, ..., b-1, b with
equal probability. If b < a, the call constitutes an error.

3) real procedure uniform (a,b,U); name U; real a,b; integex U;

The value 1is uniformly distributed in the interval a (= u ¢
b. If b ¢ a, the call constitutes an error.

4) real procedure normal (a,b,U); pame U; real a,b; integer U;
The value is norially distributed with mean a and standard
deviation b. An approximation formula may be used for the
normal distribution function.

5) real procedure negexp (a,U); name U; real a; inteqer U;

The value is a drawing from the negative exponential
distribution with mean 1/a, defined by -ln{(u)/a, where u is a
basic drawing. This is the same as a random "waiting time" in
a Poisson distributed arrival pattern with expected number of
arrivals per time unit equal to a. If a is non-positive, a
runtime error occurs.

6) integer procedure Poisson (a,U); name U; real a; integer U;
The value is a drawing from the Poisson distribution with
parameter a. It is obtained by n+1 basic drawings, u(i),

where n 1is the function value. n is defined as the smallest
non-negative integer for which

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 163
THE STANDARD ENVIRONMENT

n
L u(i) < e**(-a)
i=0

The validity of the formula follows from the equivalent
condition

n
L ~ln(u(i))/a > 1
i=0

where the left hand side is seen to be a sum of “waiting
times* drawn from the corresponding negative exponential
distribution.

When the parameter a is greater than some implementation
defined value, for instance 20.0, the value may be

approximated by entier(normal(a,sqrt(a),U) + 0.5) or, when
this is negative, by zero.

7) real procedure Erlang (a,b,U); name U; real a,b; jinteqger U;
The value is a drawing from the Erlang distribution with mean

1/a and standard deviation 1/(at*sqrt(b)). It is defined by b
basic drawings u(i), if b is an integer value,

In(u(i))/(a*Db)

}
N o

i=t

and by c+1 basic drawings u(i) otherwise, where c is equal to
entier(b),

c
- ([1ln(u{i))/(a*b)) - (b-c)*ln(u(c+1))/(a*b)
i=1

Both a and b must be greater than zero.

The last formula represents an approximation.

8) integer procedure discrete (A,U); npame U; real array A;
integer U;

The one-dimensional array A, augmented by the element 1 to
the right, is interpreted as a step function of the
subscript, defining a discrete (cumulative) distribution
function. The array is assumed to be of type real.

The function value is an integer in the range (lsb, usb+1),
where 1sb and usb are the lower and upper subscript bounds of
the array. It is defined as the smallest i such that A(i) >
u, where u is a basic drawing and A(usb+1) = 1.

ND-60.208.1 EN

—————————— Seanned-byJonny-OddeneforSintrarbatao2040——

164 ND-500 SIMULA REFERENCE MANUAL
THE STANDARD ENVIRONMENT

9) real procedure linear (A,B,U); name U; real array A,B;
inteqer U;

The value is a drawing from a (cumulative) distribution

function F, which is obtained by linear interpolation in a
non-~equidistant table defined by A and B, such that A(i) =

F(B(i)).
It is assumed that A and B are one-dimensional real arrays of
the same length, that the first and last elements of A are
equal to O and | respectively and that A(i) >= A(j) and B(i)
> B(j) for 1 > 3. If any of these conditions are not
satisfied, the effect is implementation defined.
The steps in the function evaluation are:

i) Draw a uniform <0, 1> random number, u.

ii) Determine the lowest value of i, for which

A(i-1) <= u <= A(i)

iii) Compute D = A(i) -~ A(i-1)

iv) i£ D = 0: linear = B(i-1)

B(i-1) + (B(1)
- B(i-1))*(u-A(i-1))/D

if D ¢> 0: linear

10) integer procedure histd (A,U); name U; real array A; .inteqer

The value is an integer in the range (lsb,usb), where 1sb and
usb are the lower and upper subscript bounds of the one-
dimensional array A. The latter is interpreted as a histogram
defining the relative frequencies of the values.

10.8.3 SUPPLEMENTARY PROCEDURES

integer procedure nextrandom(n,u); integer n,u; ;
integer procedure unique; unique:= ,...... ;

The procedure statement “nextrandom(n,u)® returns the °"n“'th successor
to the stream number °“u®. Negative values for "n® are permitted,
implying the corresponding predecessor.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 165
THE STANDARD ENVIRONMENT !

Procedure “unique®" returns some "unpredictable® non-negative integer
value, to be used for example in simulation programs where varying
starting values are required for random generator seeds. (It may in
practice be some reading of the internal machine clock or something

similar.)

10.9 CALENOAR AND TIMING UTILITIES

text procedure date_time; date_time:- Copy("....");
real procedure cptime; cptime:= ;
real procedure clocktime; clocktime:= ;

The procedure "date_time" returns a new constant text frame containing
the current date and time in the form YYYY-MM-DD HH:MM:SS.sss.... The
number of decimals in the field for seconds is implementation
dependent.

The procedure “cptime" returns the number of processor seconds spent
by the currently executing program.

The procedure “clocktime® returns the number of seconds since
midnight.

10. 10 MISCELLANEOUS UTILITIES

procedure histo(a,b,c,d); real array a,b;

real c,d; ;
Boolean procedure simple(x); pame X; <type)> x;
simple:= ... is actual parameter "x" simple? ...;

Procedure statement °*histo(A,B,c,d)* updates a histogram defined by
the one-dimensional arrays A and B according to the observation ¢ with
the weight d. A(lba+i) is increased by d, where i 1is the smallest
integer such that c <(= B(lbb+i) and lba and lbb are the lower bounds
of A and B respectively. If the length of A is not one greater than
that of B the effect is implementation defined. The last element of A
corresponds to those observations which are greater than all elements
of B.

The procedure "simple® returns the Boolean value true only if the
indicated procedure actual parameter transferred by name is legal as
the left hand side of an assignment. In the case of a text parameter,
the result is true only if the actual parameter is a text variable
{i.e. a text reference assignment would be legal - a text value

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

166 i ND-500 SIMULA REFERENCE MANUAL
THE STANDARD ENVIRONMENT

assignment may still be invalid; e.g. if the referenced value is a
constant).

10. 11 SYSTEM CLASSES FOR LIST HANOLING (SIMSET) AND DISCRETE EVENT
MODELLING (SIMULATION)

class simset; ;

simset class simulation; ;

The two classes "simset” and “simulation® are available at any block
level of a program. An uncommitted occurrence of the identifier
"simset” or "simulation® will act as if an appropriate declaration of
the corresponding system class were part of the block head of the
smallest textually enclosing block. An implementation may restrict the
number of different block levels at which such implicit declarations
may OCCur in any one program,

The classes "simset® and "simulation® are described in greater detail
in chapters 11 and 12 respectively.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 167

ND-60.208.t EN

Scanned h‘,’ Innny Qddene for Sintran Data © 2010

168

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 169
THE CLASS SIMSET

11 THE CLASS SIMSET

The class “"simset® contains facilities for the manipulation of
circular two-way lists, called “sets”.

11.1 GENERAL STRUCTURE

class simset;

begin clasg linkage; ;
linkage g¢lags link; ;
linkage ¢lass head; ;

end simset;

The reference variables and procedures necessary for set handling are
introduced in standard classes declared within the class "simset®.
Using these classes as prefixes, their relevant data and other
properties are made parts of the object themselves.

Both sets and objects which may acquire set membership have references
to a successor and a predecessor. Consequently they are made
subclasses of the "linkage® class.

The sets are represented by objécts belonging to a subclass *"head" of
“linkage®. Objects which may be set members belong to subclasses of
“link® which is itself another subclass of "linkage®.

11.2 CLASS "LINKABE"

class linkage;
beqgin ref (linkage) SUC, PRED;
ref (link) procedure suc;
suc:~ if SUC in link then SUC else none;

ref (link) procedure pred;
pred:- if PRED ip link then PRED else none;

ref (linkage) procedure prev;
prev:- PRED;

end linkage;

The class "linkage® is the common denominator for °"set heads" and °“set
members”.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

170 ND-500 SIMULA REFERENCE MANUAL
THE CLASS SIMSET

SUC is a reference to the successor of the linkage object in the
set; “PRED" is a reference to the predecessor.

The value of °SUC® and “PRED® may be obtained through the procedures
*suc®” and °“pred”. These procedures will give the value fione if the
designated object is not a "set® member, i.e. of class “link" or a
subclass of °“link".

The attributes °SUC" and °*PRED" may only be modified through the use
of procedures defined within “link®" and "head". This protects the user
against certain kinds of programming errors.

The procedure “prev" enables a user to access a set head from its
first member.

11.3 CLASS "LINK®

linkage class link;
beqin proceduyre out;
if sSUC =/= pone then
begin SUC.PRED:- PRED;
PRED.SUC:- SUC;
SUC:- PRED:- pone

end out;
procedure follow(X); ref (linkage) X;
begin out;
if X =/= none and then X.SUC =/= pone then
begin PRED:- X;
SUC:-_X.sUC;
SUC.PRED:~- X.SUC:- this linkage
end
end follow;
procedure precede(X); ref (linkage) X;
begin out;
if X =/= pope and then X.SUC =/= none then
beain SUC:- X;
PRED:- X.PRED;
PRED.SUC:- X.PRED:- this linkage
end
end precede;
procedure into(S); ref (head) S;
precede(S);
end link;

Objects belonging to subclasses of the class "link® may acquire set
uenbership. An object may only be a member of one set at a given

instant.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND~500 SIMULA REFERENCE MANUAL 17
THE CLASS SIMSET

In addition to the procedures °“suc” and “pred®, there are four
procedures associated with each °®link® object: “out®, “follow”,
"precede® and "into°.

The procedure “out® will remove the object from the set (if any) of
which it is a member. The procedure call will have no effect if the
object has no set membership.

The procedures °"follow" and “precede® will remove the object froa the
set (if any) of which it is a member and insert it in a set at a given
position. The set and the position are indicated by a parameter which
is inner to "linkage®. The procedure call will have the same effect as
*out® (except for possible side effects from evaluation of the
parameter) if the parameter is gone or if it has no set membership and
is not a set head. Otherwise the object will be inserted immediately
after ("follow®) or before (“precede®) the "linkage" object designated
by the parameter.

The procedure “into" will remove the object from the set (if any) of
which it is a member and insert it as the last member of the set
designated by the parameter. The procedure call will have the same
effect as “"out" if the parameter has the value none (except for
possible side effects from evaluation of the actual parameter).

11.4 CLASS "HEAD®

linkage class head;
beqin ref (link) procedure first; first:- suc;
ref (link) procedure last; last:- pred;

Boolean procedure empty;
empty:= SUC == this linkage;

integer procedure cardinal;
begin integer I;

ref (link) X;

X:~ first;

while X =/= pnone do

beain I:= I+t;

~ X:- X.suc
end;

cardinal:= I
end cardinal;

procedure clear;
while first =/= pone do first.out;

SUC:- PRED:- this linkage
end head;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

172 ND-500 SIMULA REFERENCE MANUAL
THE CLASS SIMSET

An object of the class ‘“head®, or a subclass of "head" is used to
represent a set. "Head® objects may not acquire set membership. Thus,
a unique *head" is defined for each set.

The procedure “first® may be used to obtain a reference to the first
member of the set, while the procedure "last® may be used to obtain a
reference to the last member.

The Boglean procedure “empty" will give the value trye only if the set
has no amembers.

The inteqer procedure "cardinal® may be used to count the number of
members in a set.

The procedure °clear” may be used to remove all members from the set.

The references °SUC® and °“PRED® will initially point to the *head®
itself, which thereby represents an empty set.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 173

IHE C1ASS SIMII ATION

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

174 * ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 175
THE CLASS SIMULATION

12 THE CLASS SIMULATION

The system class “simulation® may be considered an “application
package® oriented towards simulation problems. It has the class
*simset® as prefix, and set-handling facilities are thus immediately
available.

In the following sections the concepts defined in “simulation® are
explained with respect to a prefixed block, whose prefix part is an
instance of the body of “simulation® or of a subclass. The prefixed
block instance will act as the head of a quasi-parallel systeam which
may represent a "discrete-event” simulation model.

12. 1 GENERAL STRUCTURE

simset ¢lags simulation;
beqin link class EVENT_NOTICE (EVTIME, PROC);
long real EVTIME; ref (process) PROC;
beajn ref (EVENT_NOTICE) procedure suc;
suc:- 1f SUC is EVENT_NOTICE thenp SUC
else pone;

ref (EVENT_NOTICE) procedure pred;
pred: - PRED;

procedure RANK_IN_SQS (AFORE); Boolean AFORE;
begin ref (EVENT_NOTICE) P;
P:- 5QS.last;
while P.EVTIME > EVTIME do
P:- P.pred;
1f AFORE then
while P.EVTIME = EVTIME do
P:- P.pred;
follow(P)
end RANK_IN_SQS;
end EVENT_NOTICE;

link ¢class process;
beqin ref (EVENT_NOTICE) EVENT;

end process;
ref (head) sSQS;

ref (EVENT_NOTICE) procedure firstev;
FIRSTEV:- SQS.first;

ref (process) procedure current;
current:- FIRSTEV.PROC;

long real procedure time;
time:= FIRSTEV.EVTIME;
procedure hold ;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

176 ND-500 SIMULA REFERENCE MANUAL
THE CLASS SIMULATION

procedyre passivate :
procedyre wait :
procedyre cancel :
procedyre activat :

procedure accum ;
process class MAIN_PROGRAM :

ref (MAIN_PROGRAM) main;
SQS:- new head;
main:- new MAIN_PROGRAM;
main.EVENT:- pew EVENT_NOTICE(O,main);
main.EVENT.into(SQS)
end simulation;

When used as a prefix to a block or a class, "simulation® introduces
simulation-oriented features through the class “process”’ and
associated procedures.

The variable <SQS® refers to a °set” which is called the “sequencing
set®, and serves to represent the system time axis. The members of the
sequencing set are event notices ranked according to increasing values
of the attribute “EVTIME". An event notice refers through its
attribute “PROC" to a "process” object, and represents an event which
is the next active phase of that object, scheduled to take place at
system time EVTIME. There may be at most one event notice referencing
any given process object.

The event notice at the °"lower® end of the sequencing set refers to
the currently active process object. The object can be referenced
through the procedure “current®. The value of EVTIME foxr this event
notice is identified as the current value of system time. It may be
accessed through the procedure “time*.

12.2 CLASS °PROCESS®

link clags process;
begin ref (EVENT_NOTICE) EVENT;
Boolean TERMINATED;
Boolean procedure idle; idle:= EVENT == pope;

Boolean procedure terminated;
terminated:= TERMINATED;

long real procedure evtime;
if idle then
error(*..." ! No Evtime for idle process)
elge evtime:= EVENT.EVTIME;

ref (process) procedure nextev;
nextev:- if idle then none else

if EVENT.suc == pone then nopne
else EVENT.suc.PROC; .

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 177
THE CLASS SIMULATION

detach;

ioper;

TERMINATED:= true;

passivate;

erroxr(®..." ! Terminated process;)

end process;

An object of a class prefixed by °process” will be called a process
object. A process object has the properties of °link" and, in
addition, the capability to be represented in the sequencing set and
to be wmanipulated by certain sequencing statements which may modify
its “process state". The possible process states are: active,
suspended, passive and terminated.

when a process object is generated it immediately becomes detached,
its reactivation point positioned in front of the first statement of
its user-defined operation rule. The process object remains detached
throughout its dynamic scope.

The procedure "idle” has the value trye if the process object is not
currently represented in the sequencing set. It is said to be in the
passive or terminated state depending on the value of the procedure
“terminated”. An idle process object is passive 1f its reactivation
point is at a user defined prefix level. If and when the PSC passes
through the final end of the user-defined part of the body, it
proceeds to the final operations at the prefix level of the class
"process", and the value of the procedure "terminated® becomes true.
Although the process state "terminated®" is not strictly equivalent to
the corresponding basic concept defined above (cf. pages 83 and 139),
an implementation may treat a terminated process object as terminated
in the strict- sense. A process object currently represented in the
sequencing set is said to be ‘suspended®, except if it is represented
by the event notice at the lower end of the sequencing set. In the
latter case it is active. A suspended process is scheduled ¢to become
active at the s3ystem time indicated by the attribute EVTIME of its
event notice. This time value may be accessed through the procedure
"evtime®. The procedure “"nextev" will reference the process object, if
any, represented by the next event notice in the sequencing set.

12.3 ACTIVATION STATEMENT
activation-statement
= activation-clause scheduling-clause

activation-clause
= activator object-expression

activator
= ‘activate®
! ‘*reactivate’

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

178 ND-500 SIMULA REFERENCE MANUAL
THE CLASS SIMULATION

scheduling-clause
= empty
! timing-clause
1 ("before" ! “after") object-expression

timing-clause
= sgimple-timing-clause ("prior"®)

simple-timing-clause
= ("at" ! ‘"delay”) arithmetic-expression

An activation statement is only valid within an object of a class
included in °*simulation®, or within a prefixed block whose prefix part
is such an object.

The effect of an activation statement is defined as being that of a
call on the sequencing procedure "activat" local to ®simulation®, i.e.

procedure activat (REAC, X, CODE, T, Y, PRIO);
value CODE; ref (process) X, Y; Boolean REAC, PRIO;
Lext CODE; long real T;

The actual parameter list is determined from the form of the
activation statement, by the following rules:

1) The actual parameter corresponding to "REAC® is true-if the
activator is reactivate, false otherwise.

2) The actual parameter corresponding to "X" 1is the object
expression of the activation clause.

3) The actual parameter corresponding to *T" is the arithmetic
expression of the simple timing clause if present, otherwise
it is zero.

4) The actual parameter corresponding to °PRIO® is trye if prior
is in the timing clause, false if it is not used or if there
is no timing clause.

5) The actual parameter corresponding to "Y* is the object
expression of the scheduling clause if present, otherwise it
is none.

6) The actual parameter corresponding to “CODE® is defined from
the scheduling clause as follows:

scheduling clause actual text parameter
empty *direct*

at arithmetic expression ‘at"®

delay arithmetic expression "delay"

before object expression *before”

after object expression *after®

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 179
THE CLASS SIMULATION

12. 4 SEQUENCING PROCEDURES

procedyre hold(T); long real T;

inspect FIRSTEV do

beqin if T > O then EVTIME:= EVTIME + T;
if suc =/= nopne and then suc.EVYIME <= EVTIME thep
heqin out; RANK_IN_SQS(false):

resume{current)
end

end hold;

procedure passivate;
begin inspect current do
begin EVENT.out; EVENT:- pope
end;
if SQS.empty then errox("...* !S5QS empty;)
else resume(current)
end passivate;

procedure wait(S); ref (head) S;
begin current.into(S);
passivate

end wait;

procedyre cancel(X); ref (process) X;
if X == current then passivate else
inspect X do if EVENT =/= pope then
begin EVENT.out;

EVENT:- nope
end cancel;

procedyre activat(REAC, X, CODE, T, Y, PRIO);
yalue CODE; ref (process) X, Y; Boglean REAC, PRIO;
text CODE; long real T:
inspect X do if pot TERMINATED then
begin ref (process) z;
ref (EVENT_NOTICE) EV;
if REAC thep EV:- EVENT
elge if EVENT =/= gone then goto exit;
Z:- current;
if CODE = “direct” then
direct:
begin EVENT:- pew EVENT_NOTICE(time, X);
EVENT.precede(FIRSTEV)
end direct
else if CODE = "delay" then
beqgin T:= T + time;
goto at_
end delay
else if CODE = "at® then
at_: beqin if T ¢ time thep T:= time;

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

180 ND-500 SIMULA REFERENCE MANUAL
THE CLASS SIMULATION

if T = time and PRIO then goto direct;
EVENT:- pew EVENT_NOTICE(T, X);
EVENT.RANK_IN_SQS(PRIO)

end at

else if Y == pone or else Y.EVENT == none
then EVENT:- none else
begin if X == Y ghen goto exit;
copment reactivate X before/after X;
EVENT:- pnew EVENT_NOTICE(Y.EVENT.EVTIME, X);
if CODE = "before® then EVENT.precede(Y.EVENT)
else EVENT.follow(Y.EVENT)
end before or after;
if EV =/= pone then

begin EV.out;
1f SQS.empty then error(®...° !5QS empty;)
end;
if z =/= current thep resume(current);
exit:
end activat;

The sequencing procedures serve to organize the quasi-parallel
operation of process objects in a simulation model. Explicit use of
the basic sequencing facilities (call, detach, resume) should be made
only after thorough consideration of their effects.

The statement "hold(T)", where T is a real number greater than or
equal to zero, will halt the active phase of the currently active
process object, and schedule its next active phase at the system time
"time + T". The statement thus represents an inactive period of
duration T. During the inactive period the reactivation point is
positioned within the *hold®” statement. The process object becomes
suspended.

The statement “passivate” will stop the active phase of the currently
active process object and delete its event notice. The process object
becomes passive. Its next active phase must be scheduled from outside
the process object. The statement thus represents an inactive period
of indefinite duration. The reactivation point of the process object
is positioned within the °®passivate® statement.

The procedure “"wait" will include the currently active process object
in a referenced set, and then call the procedure “passivate®.

The statement “cancel(X)°®, where X is a reference to a process object,
will delete the corresponding event notice, if any. If the process
object is currently active or suspended, it becomes passive. Otherwise
the statement has no effect. The statement “cancel(current)® 1is
equivalent to “passivate".

The procedure “activat®" represents an activation statement, as
described in 12.3. The effects of a call on the procedure are
described in terms of the corresponding activation statement. The
purpose of an activation statement is to schedule an active phase of a
process object.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL : 181
THE CLASS SIMULATION

Let X be the value of the object expression of the activation clause.
If the activator is activate the statement will have no effect (beyond
that of evaluating its constituent expressions) unless X is a passive
process object. If the activator is reactjivate and X is a suspended or
active process object, the corresponding event notice is deleted
(after the subsequent scheduling operation) and, in the latter case,
the current active phase is terminated. The statement otherwise
operates as an activate statement.

The scheduling takes place by generating an event notice for X and
inserting it in the sequencing set. The type of scheduling is
determined by the scheduling clause.

An empty scheduling clause indicates direct activation, whereby an
active phase of X is initiated immediately. The event notice is
inserted in front of the one currently at the lower end of the
sequencing set and X becomes active.The system time remains unchanged.
The formerly active process object becomes suspended.

A timing clause may be used to specify the system time of the
scheduled active phase. The clause °delay T", where T is an arithametic
expression, is equivalent to "3t time + T". The event notice is
inserted into the sequencing set using the specified system time as
ranking criterion. It is normally inserted after any event notice with
the same system time; the symbol “prjor* may, however, be used to
specify insertion in front of any event notice with the same system
time.

Let Y be a reference to an active or suspended process object. Then
the clause "before Y* or "after Y" may be used to insert the event
notice in a position defined relation to (before or after) the event
notice of Y. The generated event notice is given the same system time
as that of Y. If Y is not an active or suspended process object, no
scheduling will take place.

Examples:
The statements
activate X
activate X before current
activate X delay O priox
activate X at time priox
are equivalent. They all specify direct activation.
The statement
reactivate current delay T

is equivalent to *hold(T)".

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

182 ND-500 SIMULA REFERENCE MANUAL
THE CLASS SIMULATION

12.5 THE MAIN (SIMUNLATION) PROGRAM

process class MAIN_PROGRAM;
begin

while true do detach
end MAIN PROGRAM;

It is desirable that the main component of a simulation model, i.e.
the *simulation® block instance, should respond ¢to the sequencing
procedures of page 179 as if it were itself a process object. This is
accomplished by having a process object of the class °"MAIN_PROGRAM® as
a permanent component of the quasi-parallel systea.

The process object will represent the main component with respect to
the sequencing procedures. Whenever it becomes operative, the PSC (and
0SC - the outer sequence control) will immediately enter the main
component as a result of the "detach® statement (cf. page 146). The
procedure “current® will reference this process object whenever the
main component is active.

A simulation model is initialized by generating the MAIN_PROGRAM
object and scheduling an active phase for it at system time zero. Then
the PSC proceeds to the first user-defined statement of the
“simulation® block.

12.6 THE PROCEDURE °“ACCLM*

procedure accum (a,b,c,d); name a,b,c; long real a,b,c,d;
hegin

a:= a+c * (time-b); b:= time; c:=c + 4
end accum;

A statement of the form "accum (A,B,C,D)" may be used to accumulate
the "systea time integral® of the variable C, interpreted as a step
function of systes time. The integral is accumulated in the variable
A. The variable B contains the system time at which the variables were
last updated. The -value of D is the current increment of the step
function.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

183

184 ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 185
COMPILING A SIMULA PROGRAM

13 COMPILING A SIMULA PROGRAM
The SIMULA compiler is normally activated by:
8ND-500 (ND~-SIMULA-AROOQ)SIMULA

The compiler will then be loaded, and after initialization it will
respond with the ND-500 SIMULA prompt:

SIM:

At this point the compiler is in monitor mode, and it will then accept
one of the commands listed below:

cc RECOMPILE
COMPILE S-COMPILE
EXIT SAVE

HELP SET
LIBRARY STATUS
LISTING

These commands are described in separate sections later in this
chapter.

13. 1 THE HELP FUNCTION

Whenever the ND-500 SIMULA system is in monitor mode the help function
may be activated, simply by typing HELP in answer to the prompt, i.e.:

SIM; HELP

Currently this results in a 1list of the available commands being
displayed.

13.2 COMPILATION OF SOURCE MOOULES

Format: SIM; COMPILE <source-file> (listing-file> <(object-file>
SIM: RECOMPILE <(source-file)> <(listing-file)> <(object-file)>

These commands are used to initiate compilation of a SIMULA source
module. The COMPILE command is used to compile a source module (i.e. a
main program, a procedure or a class declaration) from scratch. The
RECOMPILE command is used to perform a compatible recompilation of a
previously compiled procedure or class.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

186 ND-500 SIMULA REFERENCE MANUAL
COMPILING A SIMULA PROGRAM

The parameters of the COMPILE and RECOMPILE commands are:
(SOURCE-FILE)> Specification of the main source file.

If this parameter is not given, then the input will be
taken from the default source file (SYSIN or as
redefined by a SET SOURCE command). The default file
type for the source file is :SYMB.

(The input may be combined from different source files
by means of the ACOPY directive; see page 11.)

If source input is taken from SYSIN, then any
occurrence of the character @ in column 1 is
interpreted as an End-of-File, and the rest of the line
is ignored.

(LISTING-FILE)> Specification of the output listing file.
If this parameter is non-empty, it implies a listing
compand with listing level 2, i.e. a direct listing of

the source text with line numbers on the specified
file.

(OBJECT-FILE> Specification of the output object file.

If this parameter is not given, then the output will be
written to the default object file (file-name: <module-
ident)>:NRF, or as redefined by a SET NRFCODE command).
The default file type for the object file is :NRF.

The <(module-ident)> is the identifier of the separately
compiled procedure or class, or SIMULA-PROGRAM in the
case of compiling a main program.

Compatible recompilation is treated on page 133 et seq.

13.2.1 PHYSICAL LIMITATIONS
dStorage Space

When running the SIMULA Compiler, it will need space for storing
information about the program. The need for space will depend on the
program compiled, and mainly on its structure of blocks and
declarations.

If you get the message "Storage request cannot be met®, this implies
that you have to specify a larger work space. Space requirements are
specified through the SET STRG command.

] hysical Limitati

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 187
COMPILING A SIMULA PROGRAM

The maximum depth of nested block levels that is accepted is S0.
The maximum number of BEGIN-END pairs is 900.
The number of indices to arrays cannot exceed 10.

The number of parameters to classes (accumulated through the prefix
chain) and to procedures is limited to 65535.

The number of characters in a text object cannot exceed 65535.
The total number of elements in an array object cannot exceed 65535.

The sum of the number of different constants and the number of
different identifiers used in the program has a limit of about 2700.
Here visible identifiers in external classes or procedures should also
be counted.

The limits for 1legal constants of the types integer, real and long
real are as follows:

integer 32 bits
real 32 bits
long real 64 bits

13.2.2 DIAGNOSTICS -FROM THE COMPILER

The source text input to the compiler consists of compiler directive
lines and program lines. The compiler directive lines are treated in a
special way and special messages will be given in case of errors in
the directive. The sequence of program lines constitutes the program
text and this is checked for syntactic and static semantic errors.

The compiler will recover from a syntactic error in order to check as
much as pogsible of the remaining program text. Recovery entails
skipping part of the program text after the point of detection of the
error. The skipped text will thus not be <checked for
syntactic/semantic errors.

In case of a semantic error the compiler will recover so that no (or
at least a minimum of) errors will be caused by the error and so that
an optimal checking of the remaining program may be performed.

When syntactic or semantic errors are detected no code will be
produced.

Messages concerning syntactic errors will be output during FEC pass 1,
while semantic errors are reported from FEC pass 2.

Syntactic error messages will normally appear in the 1listing of the
program. They will appear under the line where they were detected,
with an '*' in the position where the error seems to start (This can
sometimes be misleading!). A short message explaining the error will
occur under this indicator. More than one error may be noted under
each line.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

188 ND-500 SIMULA REFERENCE MANUAL
COMPILING A SIMULA PROGRAM

If listing is given on another file than the messages, or if no
listing is given at all, then those lines containing syntactic errors
Wwill be listed above the error messages concerning this line. These
lines will be preceeded by line numbers.

The semantic error messages will be given after the listing of the
program is finished. Each will start with a line number, but they will
not be fully sorted. Errors concerning the consistency of declarations
(e.g. double declarations or illegal qualifications), will in some
cases occur out of order. The number appearing in parentheses after an
identifier gives the line number where the identifier is declared, or
if it is not declared, it gives the line number where this identifier
was seen the first time.

Some of the messages will be warnings and are marked as such. A
warning does not affect the generation of code. They may be suppressed
by suitable setting of parameters.

In some cases the compiler detects situations which, although in
accordance with the language definition, never the less are
sufficiently unusual to be worth bringing ¢to the programmer's
attention. Examples are Boolean expressions which always evaluate to a
constant value. In this case the compiler will issue a message called
a note. It will not affect generation of code. Notes are suppressed
together with the suppression of warnings.

13.2.3 DEVIATIONS FROM THE SIMULA STANDOARD

According to the standard there must be space between colon and a
minus sign in array bounds. In this implementation a space is not
needed.

According to the standard, the procedures ‘“putfix‘, "putyreal”,
*outfix® and "outreal® must have long real formal parameters. In this
implementation these are, however, overloaded, so that there exist a
Leal and a long real version of each. The procedures “getreal’ and
“inreal" are always long real procedures.

The following constitutes a complete list of implementation omissions:
1) SWITCHes cannot be transmitted as parameter.

2) SWITCH elements have to be simple labels that are directly
visible.

3) Attribute protection is not implemented (but is syntactically
checked) .

4) FOR-statements with value assignment, where the controlled

variable 1is of type text, and FOR-statements with controlled
variable of type character are not properly implemented.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL ALL
COMPILING A SIMULA PROGRAM

5) Labels and switches “seen® through inspection are currently
illegal, and not invisible as the standard prescribes.

6) It is not legal to make subclasses of the predefined file
classes.

7) The last actual parameter to the random drawing procedures
(corresponding to an integer name formal parameter) should
always be a simple integer variable.

8) Separately compiled modules are always compiled to block
level 1t (i.e. local to the prograa block).

9) External non-SIMULA procedures have to appear with a binding
and only non-SIMULA external procedures may have a binding.
External non-SIMULA procedures are not allowed to occur in an
external head (see page 136).

13.3 LIBRARY SPECIFICATION COMMAND
Format: SIM; LIBRARY <Dir:User-id>

The LIBRARY command is used to define additional library directories.
This is particulary useful when a SIMULA module contains references to
separately compiled procedures and classes, and the results of these
compilations reside on files contained under another user.

During file opening a file is searched under the current user, or
under user SYSTEM, in that orxder. 1If the file is not found under
either user, additional libraries may be searched as specified in
LIBRARY commands. The order in which the search take place is the
reverse of the order in which the LIBRARY commands are given.

13.4 THE LISTING COMMAND

Format: SIM: LISTING <(listing-level> <listing-file>

The LISTING command is used to specify the amount of information
contained in the compiler listing. In addition it may be used to

direct the listing output from the compiler to a specified file.
Initially listing is off.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

190 ND-500 SIMULA REFERENCE MANUAL
COMPILING A SIMULA PROGRAM

Parameters to the LISTING command:
(LISTING-LEVEL)> An integer specifying the listing format:
0 - No listing is produced
- Direct listing without line numbers is produced

1
2 - Direct listing with line numbers is produced
3 - A pretty-print listing is produced

*) currently not implemented

If this parameter is not given, 2 is assumed.

C(LISTING-FILE> Specification of the output listing file.

12 this parameter is not given, then the listing will
be written to the default 1listing file (normally
SYSOUT or as redefined by a SET LISTFIL command). The
default file type for the listing file is :SYMB.

13.5 CREATE SIMULA INIT FILE
Format: SIM: SAVE < RT ! CT >

The SAVE command 1is used to save the currently defined default
parameter values in one of two initialization files: SIMULA-RT:INIT
or SIMULA-CT:INIT under the user directory. If RT (i.e. Run Time) is
specified, the file SIMULA-RT:INIT is used, otherwise the file SIMULA-
CT:INIT is used.

When the SIMULA compiler is loaded, the default parameter values are
read from the file (<user>)SIMULA-CT:INIT. On the other hand, whenever
a user program is activated, SIMULA-RT:INIT is read. Both files are
formatted suitable for editing by PED or 7-bit NOTIS.

The default values may be changed through application of the SET
command (see below).

13.6 DISPLAY CURRENT PARAMETER YALUES
Format: SIM: STATUS <(detail-level)

The STATUS command is used to display certain internal information. If
no arqument is given, or if the argument is O, the currently defined
parameter values are displayed.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 191
COMPILING A SIMULA PROGRAM \

13.7 CHANGE PARAMETERS AND SWITCHES
Format: SIM: SET <(mnemonic) <(value>

The SET command is used to alter the default value of certain system
parameters or to set or reset trace and debugging switches. As the
initial default values are read from the file SIMULA-CT:INIT, use the
STATUS command to check these values.

Normally these parameters are set during system generation and should
be of no concern to the user. It may however be necessary in
exceptional cases to alter some of the capacity parameters to enable
the compiler to process a particular program. But it should be noted
that this will influence both the storage space used by the compiler
and the coapilation speed.

The changes obtained by application of the SET command are temporary,
the default values of the ND-500 SIMULA system will not be changed
unless the SAVE coammand is used.

13.7.1 USER PARAMETER CHANGE

The following arguments to the SET command are meant for the user:

SOURCE <source-file> Alters the default source input file ¢to the
one given as the second arqument. The default
type for the source file is :SYMB.

LISTFIL <listing-file> Alters the default listing £file to the one
given as the second argument. The default type
for the listing file is :SYMB.

SCODE (S-code-file> Alters the default intermediate S-code file to
the one given as the second arquaent. The
default type for the S-code file is :SCOD.

NRFCODE <object-file> Alters the default object £file to the one
given as the second argument. The default type
for the object file is :NRF.

INPLTH <(decimal number)> Alters the default image length of SYSIN to
the value given. For the compiler, this
determines the longest source line that can be
read.

OUTLTH <decimal number) Alters the default image length of SYSOUT to
the value given.

LPP <(decimal number> Alters the default value used for all
PRINTFILEs of the attribute LINES_PER_PAGE.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

192 i

MAXERR (value>

STRG <decimal number>
SCRATCH-1 (file-name>
SCRATCH-2 <(file-name>

SCRATCH-3 (file-name>

ND-500 SIMULA REFERENCE MANUAL
COMPILING A SIMULA PROGRAM

Sets the number of error messages that will be
accepted before the compilation is terminated.

Sets the default size (in bytes) of the
working storage used by the compiler.

Alters the default name of scratch file 1. The
default type for scratch file 1 is :DATA.

Alters the default name of scratch file 2. The
default type for scratch file 2 is :DATA.

Alters the default name of scratch file 3. The
default type for scratch file 3 is :DATA.

13.7.2 DEBUGGING AND TESTING PARAMETERS

Note: The following

for maintenance use only. They are typically used during
system generation, or during debugging of the SIMULA
system, and are pnot recommended for general use.

pafaneters of the SET command are intended

ATRFIL <attribute-file-p

FECOPT <option-string>

PREDEF <(attribute-file)

SIMSET <attribute-file>

SIMLTN <attribute-file>

refix> No details given here.

This is a string of options for debugging
purposes etc. for the front end compiler.
They should be properly set in certain
initiation runs (see Installation Guide
for the FEC).The general user should skip
this section. Further details are not given
here.

Alters the attribute file for the
predefined procedures and classes.

Alters the attribute file for class simset.

Alters the attribute file for class
simulation.

DEBUG- <value> S-Compiler: Debugging level

{0: skip all debug info)

STKLNG <(value> S-Compiler: Total runtime stack length
SYSGEN <(value> S-Compiler: System gemeration

LINTAB <value> >0: Pr
SKILIN <(value) S-Conp

1: Generation of Runtime Systea

2: Generation of S-Compiler

3: Generation of Environment
oduce line-number-table
iler-Trace - Pass 1 starting line

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 193
COMPILING A SIMULA PROGRAM

SK1TRC <value> Pass { Trace value: OMTI , where
0 = 0..9 Output trace level
M = 0..9 Module input/output trace level
T = 0..9 Trace-mode level
I = 0..9 Input trace level
SK2LIN <value> S-Compiler-Trace - Pass 2 starting line
SK2TRC <value> Pass. 2 Trace value:- OMTI (as SK1TRC)
MAXTAG <(value> S-Compiler: Max number of tags
MAXXTG <value)> S-Compiler: Max number of ext-tags in
global module
MAXMOD <value> S-Compiler: Max number of inserted modules
MAXFIX <value> S-Compiler: Max number of fixups
MAXSMB <(value> S-Compiler: Max number of symbols in symbol-table
MAXREF <value> S-Compiler: Max number of undefined symbols
MAXDEF <value> S-Compiler: Max number of entry points
TRACE <(value> SIMULA-Monitor: Trace level
OPTION <(option-list)> Sets debug-options.

Each element in the OPTION-LIST is a letter, possibly followed by a
number. The following option letters are currently defined (not all of
these are as of yet implemented):

FEC: Include begin/end counters in program listing
Environment call trace level
FEC: Include statements counters
Environment error trace level
Environment file trace level
GARB: Trace level
FEC: Do not print warning messages
FEC: Include information for SIMOB
FEC: Include processor usage measurements
S-Compiler: Make main program a routine
FEC: Reduce runtime checking (array and none)
Runtime-Trace level: Passed on to the RTS
as a value 0..10
Environment mode (0O:user,1:FEC,2:FEC,3:5-Compiler)
Runtime Work space (initially): 2**W addressing units
will be allocated at definition time
FEC: Produce cross-reference listing
FEC: Start/stop information level (1,2,3)
Let FEC/S-Compiler handle parameters on its own

HPWOYOZOMMOAOQ W

£ <

[

13.8 SEPARATE ACTIVATION OF THE S-COMPILER

Format: SIM: S-COMPILE <S-code-file)> <{object-file>
This command is not meant for the ordinary user. It is described here

for coampleteness only. When used, the S-COMPILE command will initiate
S-Compilation of a previously saved S-code file.

ND-60.208.1 EN

Scanmed-by-Jormy-Oddenefor-Sintram-bBata-©-2646

194 ' ND-500 SIMULA REFERENCE MANUAL
COMPILING A SIMULA PROGRAM

Parameters to the S-COMPILE commands:

(S-code-file> Specification of the input S-code file. If this
parameter is not given, then the input will be taken
from the default S-code file (set by a SET SCODE
command). The default file type for S-code files is
:SCOD.

(object-file> Specification of ¢the output object file. If this
‘parameter is not given, then the output will be written
to the default object file (SIMULA-PROGRAM:NRF or as
redefined by a SET NRFCODE command). The default file
type for. the object file is :NRF.

13.9 SPECIAL MAINTENANCE OIRECTIVES

The directives listed in this section are intended for maintenance
purposes and are not recommended for general use. Consequently only a
very short explanation is given for each directive; further
information may be found in the system documentation. Note that the
resulting output may be very voluminous!

13.9.1 S-COMPILER DIRECTIVES .

The following directives will cause the S-Compiler to set certain
internal switches. Only nonnegative integers less than 256 are
accepted as values for 'val'.

ASETSWITCH 1 val -- S-Compiler Input Listing
ASETSWITCH 2 val -- S-Compiler Trace-amode
SSETSWITCH 3 val -- S-Compiler Module-Trace-mode
ASETSWITCH 4 val -- S-Compiler Output Listing

13.9.2 FEC DIRECTIVES
ASETOPT (test-option change indicator>

This directive will change the set of options used for test output
from the front-end compiler. The test-option change indicator is a
string of characters. If the first of these characters is '+' then the
options corresponding to the characters in the rest of the string are
switched on. If the first character is ’'~' then the corresponding
options are switched off. If the string starts with any other
character, then all options corresponding to characters in the string
will be switched on, and all other options are switched off.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 198
COMPILING A SIMULA PROGRAM

ACOMPCALL (integer index)> <any string>

This directive is handled as if it was unknown to the front end
compiler in the sense that it is sent out as INFO-instruction in the
S-code. However, it has the extra effect that at the place it is
encountered, each of the passes of the front end compiler will call
the procedure "give. textinfo® with the two parameters of the
directive.

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

196 ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

197

198 ND-500 SIMULA REFERENCE MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 199
LINK-LOADING OF SIMULA PROGRAMS

14 LINK-LOADING OF SIMLA PROGRAMS

14.1 SINGLE SEGMENT LOAD

@ND LINKAGE-LOADER
RELEASE-DOMAIN <(domain-ident)
DELETE-DOMAIN (domain-ident)
SET-DOMAIN “<domain-ident>"
OPEN-SEGMENT "<(domain-ident)>" CWP
SUPPRESS-DEBUG-INFO OFF
LINK-SEGMENT (ND-SIMULA-AROQ)RTS-APO2
LOAD-SEGMENT <program-ident-1)
LOAD-SEGMENT <program-ident-n>
CLOSE~-SEGMENT

EXIT

14.2 SEVERAL SEGMENT LOAD

14.2. 1 PREPARING A LIBRARY SEGMENT

@ND LINKAGE-LOADER
RELEASE-DOMAIN <library-domain-ident)

_ DELETE-DOMAIN (library-domain-ident>
SET-DOMAIN “<¢library-domain-ident)"®
SET-SEGMENT-NUMBER (segment number, not 1 or 2>
OPEN-SEGMENT “<(library-domain-ident)® CWP
SUPPRESS-DEBUG-INFO OFF
LINK-SEGMENT (ND-SIMULA-AROQ)RTS-APO2
LOAD-SEGMENT <(program-ident-1>
LOAD-SEGMENT <(program-ident-n>
CLOSE~SEGMENT
EXIT

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

200 ND-500 SIMULA REFERENCE MANUAL
LINK-LOADING OF SIMULA PROGRAMS

14.2.2 USING A PREPARED LIBRARY SEGMENT

@ND LINKAGE-LOADER

RELEASE-DOMAIN <(domain-ident)
DELETE-DOMAIN (domain-ident)>
SET-DOMAIN "<(domain-ident>"
OPEN-SEGMENT "<domain-ident)® CWP
SUPPRESS-DEBUG-INFO OFF

LINK-SEGMENT (ND-SIMULA-ARCQO)RTS-APO2
FORCE-SEGMENT-LINK <library-domain-ident>
LOAD~SEGMENT (program-ident-1)>
LOAD-SEGMENT <(program-~ident-n)
CLOSE-SEGMENT

EXIT

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 139
LINK-LOADING OF SIMULA PROGRAMS

14 LINK-LOADING OF SIMULA PROGRANS

14. 1 SINGLE SEGMENT LOAD

@ND LINKAGE-LOADER

RELEASE-DOMAIN <domain-ident)
DELETE-DOMAIN (domain-ident)
SET-DOMAIN "<(domain-ident)>"
OPEN-SEGMENT °<(domain-ident>" CWP
SUPPRESS-DEBUG-INFO OFF
LINK-SEGMENT (ND-SIMULA-AROO)RTS-APO2
LOAD-SEGMENT <program-ident-1>
LOAD-SEGMENT <program-ident-n>
CLOSE-SEGMENT

EXIT

14.2 SEVERAL SEGMENT LOAD

14.2.1 PREPARING A LIBRARY SEGMENT

@ND LINKAGE-LOADER

RELEASE-DOMAIN <library-domain-ident>
_DELETE-DOMAIN <library-domain-ident)
SET-DOMAIN °<library-domain-ident>°®
SET~-SEGMENT-NUMBER (segment number, not 1 or 2>
OPEN-~SEGMENT "<(library-domain-ident)® CWP
SUPPRESS-DEBUG~-INFO OFF

LINK-SEGMENT (ND-SIMULA-AROO)RTS-APO2
LOAD-SEGMENT <program-ident-1)
LOAD~SEGMENT <program-ident-n)
CLOSE-SEGMENT

EXIT

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

200 ND-500 SIMULA REFERENCE MANUAL
LINK-LOADING OF SIMULA PROGRAMS

14.2.2 USING A PREPARED LIBRARY SEGMENT

@ND LINKAGE-LOADER

RELEASE-DOMAIN <(domain-ident)
DELETE-DOMAIN <domain-ident)>
SET-DOMAIN “<(domain-ident>*
OPEN-SEGMENT "<(domain-ident>* CWP
SUPPRESS-DEBUG-INFO OFF

LINK-SEGMENT (ND-SIMULA-~AROCQO)RTS-APO2
FORCE-SEGMENT-LINK <library-domain-ident>
LOAD-~SEGMENT (program-ident-1>
LOAD-SEGMENT <{program~ident-n)
CLOSE-SEGMENT

EXIT

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 201

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

202 ND-500 SIMULA REFERENFS MANUAL

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 203
RUNNING A SIMULA PROGRAM

15 RUNNING A SIMNLA PROGRAM

15.1 ACTIVATING THE PROGRAM

A SIMULA program is activated by entering
OND-500 (dir:user)program-name (Wxx)

in the SINTRAN environment, where ‘program-name" is the
implementation-specific SIMULA program-name, and where the optional
parameter °‘Wxx" specifies, if given, the size of the working swap
area. W must be given as shown, xx 1is a two-digit decimal number
specifying the swap size in 2**xx bytes, e.g. W10 means 1024 bytes.

This option 1is useful whenever the swap space should be changed for
one specific program. If the default area size generally is too small
for your program, the compiler command SETSTRG should be used followed
by the command SAVE RT.

15.2 SIMPLE PROGRAM COMPILE-LOAD-AND-GO IN BATCH

@ND-500 (ND-SIMULA-AROO)SIMULA
COMPILE
begin

SIMULA Source Text

end;
Q9EOF
EXIT
@PERFORM (ND-SIMULA-ARQO)LOAD LOAD
SIMULA-PROGRAM
@ND-500 SIMULA-PROGRAM

. Data Images to Sysin

@EOF

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

204 ND-500 SIMULA REFERENCE MANUAL
\ RUNNING A SIMULA PROGRAM

15.3 PRECOMPILED PROGRAMS NITH LOAD-AND-G0
Step 1. Precompiling a class and a procedure:

@ND-500 (ND-SIMULA-AROO)SIMULA
COMPILE

class c¢;

begin

SIMULA Source Text

end;

QEOF

COMPILE
procedure P;
begin

SIMULA Source Text

end;
@EOF
EXIT

Step 2, Compiling the main proqram:

@ND-500 (ND-SIMULA-AROQ)SIMULA
COMPILE

begin :
external class c;
external procedure P;
¢ begin

SIMULA Source Text

end;
end;
QEOF
EXIT

Step 3. Recompilipna the class:

@ND-500 (ND-SIMULA-AROO)SIMULA
RECOMPILE

class c;

begin

Modified SIMULA Source Text

end;
QEOF
EXIT

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

ND-500 SIMULA REFERENCE MANUAL 205
RUNNING A SIMULA PROGRAM

Step 4. Performing a load-and-qo:

@ND LINKAGE-LOADER
RELEASE-DOMAIN <domain-ident)
DELETE-DOMAIN <(domain-ident>
SET-DOMAIN "<(domain-ident>"
OPEN-SEGMENT “<(domain-ident)>" CWP
SUPPRESS-DEBUG-INFO OFF
LINK-SEGMENT (ND-SIMULA-AROO)RTS-APO2
LOAD-SEGMENT C

LOAD-SEGMENT SIMULA-PROGRAM
CLOSE-SEGMENT

EXIT

@ND-500 <(domain-ident>
. Data Lines to Sysin

QEOF

ND-60.208.1 EN

Scanned by Jonny Oddene for Sintran Data © 2010

Scanned by Jonny Oddene for Sintran Data © 2010

Scanned by Jonny Oddene for Sintran Data © 2010

faialial

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224

