

Scanned by Jonny Oddene for Sintran Data © 2011

ND FORTRAN
Reference Manual

ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

The information in this manual is subject to change without notice.

Norsk Data A.S assumes no responsibility for any errors that may appear in this manual, or
Jfor the use or reliability of its software on equipment that is not fumished or supported by
Norsk Data A.S.

Copyright(C)1988 by Norsk Data A.S Version I~ May 1981
Version 2 November 1981
Version 3 March 1982
Version 4 July 1982
Version 5 June 1983
Version 6~ March 1984
Version 7 June 1986
Version 7A September 1986
Version 8 August 1987

Send all documentation requests to:

Norsk Data A.S
Grapbic Centre

P.O. Box 25 — Bogerud
N-0621 Oslo 6
NORWAY

Scanned by Jonny Oddene for Sintran Data © 2011

Preface
Norsk Data ND-60.145.8 EN

PREFACE

THE PRODUCT

FORTRAN is a high-level programming language used mainly for
solving scientific problems on digital computers. Norsk Data
provides compilers for FORTRAN on their machines. This manual
describes the language and facilities of the following compilers:
NORD-10/ND-100 ANSI 77 FORTRAN - ND-210191 Release G

ND-500 ANSI 77 FORTRAN - ND-210190 Release K

ND-500 FORTRAN Crosscompiler - ND-210863 Release G

The language supported is that of ANSI X3.9 - 1978 FORTRAN 77 with
a very few restrictions, as noted on page viii, and a certain

number of extensions which are described in the main part of the
manual .

THE READER

This manual is intended for programmers who are writing FORTRAN
programs for ND-100 or ND-500 computers. It includes complete and
formal descriptions of the language, and the facilities it offers.

PREREQUISITE KNOWLEDGE

The reader must have a basic knowledge of data processing
techniques and have some experience with FORTRAN.

onny Oddene for Sintran Data © 2011

q
<
4

Preface
Norsk Data ND-60.145.8 EN

RELATED MANUALS

The related manuals are:

ND Relocating Loader ND-60.066
BRF-LINKER User Manual ND-60.196
Symbolic Debugger User's Guide ND-60.158
SINTRAN III Reference Manual ND-60.128
ND-500 Loader/Monitor ND-60.136

For writing real-time programs in FORTRAN, the following manuals

are recommended:
SINTRAN III Real Time Guide ND-60.133

SINTRAN III Real Time Loader ND-60.051

HOW TO USE THE MANUAL

The description is given in the order in which the statement types
appear in the written programs.

The manual is intended for reference purposes and is organized as
a progressive description of the features of ND FORTRAN. Chapter
13 lists the available compiler commands. Examples are included in
the text and a sample program is provided with extensive notes for
the programmer wanting an overview of the FORTRAN language, (see
Section 1.4.). Supplementary information is given in the
appendices at the end.

Scanned by Jonny Oddene for Sintran Data © 2011

Preface
Norsk Data ND-60.145.8 EN

RESTRICTIONS, DEVIATIONS., AND INCOMPATIBILITIES

The following items differ slightly from ANSI X3.9 - 1978 FORTRAN

77:

1.

2.

The

The

Blank COMMON cannot be expanded during the loading process.

The RECL option of the OPEN statement gives the length in
bytes, as required by the ANSI standard for both formatted and
unformatted files. However, on the ND-100 this length must be
an even number.

following are the limits on certain features:

The lengths of character strings must be less than 32767 on
the ND-500 and 2047 on the ND-100. This applies to the lengths
of all variables, constants, expressions and intermediate
results.

The number of dimensions of an array during debugging must be
less than 8.

The maximum depth of INCLUDE'd text files is 5.

maximum size of a program unit, or length of statements, or

complexity of expression are too heavily dependent on content for
any rules to be given.

The

following are known incompatibilities with the NORD-10/ND-100

(P.D. number FTN-2090) and NORD-50 compilers (P.D. number FTN-
2159) and associated libraries.

1.

2.

RECL option is in bytes.
Variables used in the specification of adjustable bounds may

be changed within the function or subroutine without modifying
the values used for bounds.

Scanned by Jonny Oddene for Sintran Data © 2011

10.

Preface
Norsk Data ND-60.145.8 EN

Variables used in the specification of the final value and
increment of DO-loops may be changed without affecting the
number of times a DO-loop is executed.

Records in a file are counted from 1 instead of 0. However,
the FIRSTREC option in the OPEN statement may be used to
override this.

Some compiler commands have been changed.

Some new options have been added to OPEN statements, IOSTAT,
FORM, BLANC, FACTOR, IOCONVERT, TYPE, MODE, PARITY, FIRSTREC
and BUFFER-SIZE

If the first character of a record of a non-print file is a §$,
then the FTN-2090 and FTN-2159 compilers are used to supress
the LF and CR characters. This compiler will only do so if the
file is a PRINT file.

The parameters to the monitor calls must now be exactly as
given in Section 13.1.

Character dummy arguments in subroutines are now taken to be
exactly as long as declared in the subroutine. To pick up the
length of the actual argument, a length of (*) must be
specified for the dummy argument.

If a variable in a DATA-statement is an array and the
corresponding constant is a Hollerith constant, the Hollerith
constant is filled in the first array element even if it is
longer than the length of the array element.

Scanned by Jonny Oddene for Sintran Data © 2011

TABLE OF CONTENTS

Section Page
1 INTRODUCTION 1
1.1 THE NOTATION . 3
1.2 FORTRAN CHARACTER SET . 4
1.3 FORTRAN TERMS AND CONCEPTS 6
1.3.1 Lines . 7
1.3.2 Statements . 9
1.3.3 Program Units and Procedures e e 10
1.3.4 Required Order of Statements and Lines A B]
1.4 NOTES ON A SAMPLE PROGRAM 13

2 DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS . 25
2.1 DATA TYPES Y |
2.1.1 Type rules for 1dent1f1ers e e e e e e e e e e . . 28
2.2 CONSTANTS « « v v v v v e e e e e e e e e e e 29
2.2.1 Integer constants 29
2.2.2 Real constants . . . e)
2.2.3 Double-precision constants O 4
2.2.4 Complex constants, 33
2.2.5 Logical constants« 34
2.2.6 Character constants 34
2.3 VARIABLES + « ¢ v « « ¢ 4 e« o« 4« 4 v « o o« « « .+ 36
2.4 ARRAYS o o i o o e e e e e e e e e e e e e .37
2.4.1 Array elements 1
2.4.2 Order of stored array elements . 1
2.4.3 Adjustable arrays+« 39
2.4.4 Assumed-size arrays e e e e e e e . .. 40
2.4.5 Actual and dummy array declarators - 4
2.5 CHARACTER SUBSTRINGS « « v ¢« v v « « . . 41
3 SPECIFICATION STATEMENTS « « . . . 43
3.1 THE DIMENSION STATEMENT 45
3.2 THE EQUIVALENCE STATEMENT c + e v« .« . . . 48
3.2.1 Array Names and Array Element Names e <. . . 49
3.2.2 Character Variables in EQUIVALENCE Statements 49
Scanned by J FaVatalV] Oddene for Sintran Data © 2011

Section Page
3.2.3 Restrictions on EQUIVALENCE Statements 50
3.3 THE COMMON STATEMENT . coe 52
3.3.1 COMMON Block Storage Sequences . . 53
3.3.2 Differences between Named COMMON and Blank COMMON . 54
3.3.3 Restrictions on COMMON and EQUIVALENCE 55
3.3.4 COMMON Blocks in APT . .. 55
3.4 TYPE STATEMENTS . . 57
3.4.1 INTEGER, REAL, DOUBLE PRECISION NUMERIC COMPLEX and
LOGICAL Type Statements . 58
3.4.2 CHARACTER Type Statement 6l
3.5 THE IMPLICIT STATEMENT 66
3.6 THE PARAMETER STATEMENT . 68
3.7 THE EXTERNAL STATEMENT 70
3.8 THE INTRINSIC STATEMENT . 71
3.9 THE SAVE STATEMENT 72
3.10 THE ASSEMBLY STATEMENT 74
4 THE DATA STATEMENT 75
4.1 DATA STATEMENT RESTRICTIONS . 77
4.2 IMPLIED DO IN A DATA STATEMENT 80
5 EXPRESSIONS . 83
5.1 ARITHMETIC EXPRESSIONS . 85
5.1.1 Interpretation of Results for Arlthmet1c Expre551ons 89
5.1.2 Arithmetic Constant Expre551ons . 92
5.2 CHARACTER EXPRESSIONS . 93
5.2.1 CHARACTER Constant Expre531ons 95
5.3 RELATIONAL EXPRESSIONS .o 96
5.3.1 Arithmetic Relational Expres51ons . 96
5.3.2 CHARACTER Relational Expressions 98
5.3.3 LOGICAL Relational Expressions 98
5.4 LOGICAL EXPRESSIONS . . 99
5.4.1 LOGICAL Constant Expre551ons . 103
5.5 EVALUATION OF EXPRESSIONS . . 103
5.5.1 The Use of Parentheses . 103
5.5.2 Precedence of Operators . : . 104
5.5.3 Location of Operators within an Express1on . 104
5.6 CONSTANT EXPRESSIONS . 106

Scanned by Jonny Oddene for Sintran Data © 2011

< iii >

Section Page
6 ARRAY EXPRESSIONS . . 107
6.1 ARITHMETIC ARRAY EXPRESSIONS . 109
6.1.1 Interpretation of Results for Arlthmetlc Array

Expressions 111
6.2 CHARACTER ARRAY EXPRESSIONS . . 113
6.3 RELATIONAL ARRAY EXPRESSIONS . . 115
6.3.1 Arithmetic Relational Array Express1ons . . 115
6.3.2 CHARACTER Relational Array Expressions . 116
6.3.3 LOGICAL Relational Array Expressions . 116
6.4 LOGICAL ARRAY EXPRESSIONS . . . 117
6.5 EVALUATION OF EXPRESSIONS . . 119
6.5.1 The Use of Parentheses . 119
6.5.2 Precedence of Operators . . 119
7 ASSIGNMENT STATEMENTS . . 121
7.1 ARITHMETIC ASSIGNMENT STATEMENT . . 123
7.2 LOGICAL ASSIGNMENT STATEMENT . . 125
7.3 STATEMENT LABEL ASSIGNMENT (ASSIGN) STATEMENT . . 126
7.4 CHARACTER ASSIGNMENT STATEMENT . 127
8 CONTROL STATEMENTS . 129
8.1 UNCONDITIONAL GO TO STATEMENT . . 132
8.2 COMPUTED GO TO STATEMENT . 133
8.3 ASSIGNED GO TO STATEMENT . 135
8.4 ARITHMETIC IF STATEMENT . . 137
8.5 LOGICAL IF STATEMENT . . 138
8.6 THE BLOCK IF, ELSEIF, ELSE, AND ENDIF STATEMENTS . 139
8.6.1 The ELSEIF Statement . 139
8.6.2 The ELSE Statement . 140
8.6.3 The ENDIF Statement . . . 141
8.6.4 Examples of Block IF, ELSEIF ELSE and ENDIF

Statements 141
8.7 THE DO STATEMENT . . 144
8.7.1 Execution of a DO Statement . . 146
8.7.2 The DO FOR ... ENDDO Statements . . 148

Scanned by Jonny Oddene for Sintran Data © 2011

< iv >

Section Page
8.7.3 The DO WHILE ... ENDDO Statements . . 149
8.8 THE CONTINUE STATEMENT . 151
8.9 THE STOP STATEMENT . 152
8.10 THE PAUSE STATEMENT . . 153
8.11 THE END STATEMENT . . 154
9 INPUT/OUTPUT STATEMENTS . . 155
9.1 I/0 TERMS AND CONCEPTS . 157
9.1.1 Records 157
9.1.2 Files . . . 158
9.1.2.1 File Format . . 159
9.1.2.2 File Access . . 160
9.1.3 Units . .o . . 162
9.1.4 Format Spec1f1er and Identlfler . . 163
9.1.5 End-of-File Specifier . . 164
9.1.6 Error Specifier . . . 165
9.1.7 Input/Output Status Spec1f1er . . 166
9.1.8 Record Specifier . 167
9.2 DATA TRANSFER OPERATIONS . 168
9.2.1 Input/Output Lists . 168
9.2.1.1 Implied DO Lists . . 169
9.2.2 Formatted and Unformatted Data Transfer . . 170
9.2.3 List-Directed Input/Output . 170
9.2.3.1 List-Directed Input . . 171
9.2.3.2 List-Directed Output . 173
9.2.4 The READ Statement . 174
9.2.5 The WRITE Statement 176
9.2.5.1 Printing of Formatted Records . . 178
9.2.6 The PRINT Statement . . 180
9.2.7 The INPUT Statement . . 181
9.2.8 The OUTPUT Statement . 181
9.3 FILE OPEN AND CLOSE . . 182
9.3.1 The OPEN Statement . 182
9.3.2 The CLOSE Statement . . 194
9.4 FILE POSITIONING . . 195
9.4.1 The BACKSPACE Statement . . 195
9.4.2 The ENDFILE Statement . . 196
9.4.3 The REWIND Statement . 197
9.5 THE INQUIRE STATEMENT . . 198

Scanned by Jonny Oddene for Sintran Data © 2011

< v o>

Section Page
10 FORMAT SPECIFICATIONS . . 207
10.1 FORMAT SPECIFICATION METHODS . 209
10.2 FORMAT DESCRIPTORS 210
10.2.1 Interaction between the Format Descrlptors and the

I/0 List . 212
10.2.2 Editing Prov1ded by the Format Descrlptors . 214
10.2.2.1 Numeric Editing . . . 214
10.2.2.2 The I and J Format Descrlptors . 215
10.2.2.3 REAL and DOUBLE PRECISION . . 216
10.2.2.4 The F Format Descriptor . . . 217
10.2.2.5 Scale Factor: The P Format Descrlptor . . 218
10.2.2.6 The E and D Format Descriptors . 220
10.2.2.7 The G Format Descriptor . . 222
10.2.2.8 COMPLEX Data . 223
10.2.2.9 S, SP and SS Format Descrlptors . 223
10.2.2.10 The BN and BZ Format Descriptors . 223
10.2.2.11 The Text Format Descriptor . 224
10.2.2.12 The H Format Descriptor . . . 224
10.2.2.13 The T, TL, TR, and rX Format Descrlptors . 225
10.2.2.14 The Slash, /, Format Descriptor . . . 226
10.2.2.15 The L Format Descriptor . . 226
10.2.2.16 The A Format Descriptor . . 227
10.2.2.17 The O Format Descriptor . . 228
10.2.2.18 The Z Format Descriptor . . 229
11 FUNCTIONS AND SUBROUTINES . . 231
11.1 DUMMY AND ACTUAL ARGUMENTS . 234
11.1.1 Variables as Dummy Arguments . 238
11.1.2 Arrays as Dummy Arguments . . 239
11.1.3 Procedures as Dummy Arguments . e . 241
11.1.4 Asterisks as Dummy Arguments/Alternatlve Return

Arguments 243
11.2 INTRINSIC FUNCTIONS . Co . 244
11.2.1 Specific Names and Generic Names . 244
11.2.2 Referencing an INTRINSIC Function . . 246
11.3 STATEMENT FUNCTIONS . N . 258
11.3.1 Statement Function Restrlctlons . . 259
11.3.2 Referencing a Statement Function . 260

Scanned by Jonny Oddene for Sintran Data © 2011

< vi >

Section Page
11.4 EXTERNAL FUNCTIONS c 261
11.4.1 Actual Arguments for an External Functlon e v v ... 262
11.4.2 Function Subprogram Restrictions , 262
11.5 SUBROUTINES L oY
11.5.1 Subroutine Reference .. e e e e e e ... 265
11.5.2 Subroutine Subprogram Restrlctlons e e e v e . . . 266
11.6 THE ENTRY STATEMENT e {1 3
11.6.1 ENTRY Statement Restrlctlons e e e e e e 4 4 . . . 268B
11.7 THE RETURN STATEMENT e e e e e e e ... 270
11.7.1 Execution of a RETURN Statement e e e e e e e w270
12 MAINPROGRAM v v v v v e v o « « v . . 273
12.1 THE PROGRAM STATEMENT 275
13 BLOCK DATA SUBPROGRAM « « ¢ v v « o o« . . 277
13.1 BLOCK DATA SUBPROGRAM RESTRICTIONS 279
14 ADVANCED FORTRAN PROGRAMMING, 281
14.1 EFFICIENT PROGRAMMING TECHNIQUES 283
14.1.1 Loops NN c e e e e e e e 4 e . . . 283
14.1.2 Loop Control Varlable e 2 74
14.1.3 Array Operations . . 1 o ¥
14.1.4 Actual Argument Data Types e e e e e e e e 285
14.1.5 CHARACTER and Hollerith 286
14.1.6 CHARACTER Alignment - ND-100 287
14.1.7 File Accessing . . e e e e e e e e e e e e, 28T
14.1.8 1/0 Buffer Allocatlon e e e e e e e o e .o 288
APPENDIX

A ASCII CHARACTER SET « « « « « « . 291
B ERROR MESSAGES « < « « v « v « . 29

__Scanned by_vlgnny Qddene for Sintran Data © 2011

< vii >

Section Page
C MONITOR CALLS « « « & & « & « « « « . . 323
D LIBRARY UTILIITY FUNCTIONS 363
E STORAGE MAPPING + « + + « v v & « . . . 391
F INTERFACES TO OTHER LANGUAGE PROGRAMS 405
G HOLLERITH « « « « « « « « . . . 439
Index 1

o —Scanned-by-Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

CHAPTER 1

INTRODUCTION

Scanned by Jon_ny_ Oddene-for-Sintran-Data-©.2014

ND-60.145.8 EN

_Scanned by Jonny Qddene for Sintran Data © 2011

ND-60.145.8 EN 3
INTRODUCTION

The FORTRAN language described in this manual is in accordance
with the American National Standard Institute's FORTRAN 77. The
full language has been implemented, except for items listed on
page 7; a certain number of ND FORTRAN extensions are noted in the
text.

1.1 THE NOTATION

The notation used throughout the manual to describe the FORTRAN
statements and constructs is listed below:

1. Square brackets, [], indicate optional items.

2. An ellipsis, ..., following square brackets specifies that the
preceding optional items may appear one or more times in
succession.

3. Round brackets, (), are part of FORTRAN and must be coded where
shown.

4. Blanks are used to improve readability, but unless otherwise
noted have no significance.

5. Grey shading, over text, has been used to highlight any di-
vergence from the ANSI FORTRAN 77 standard, including varia-
tions and ND extensions.

Note that the grey shading has been used in Chapters 1 through
11 only.

6. Windows are used to call attention to the importance of
commands.

S —Scanned-by-Jonny Oddene for Sintran Data© 2044

4 ND-60.145.8 EN
INTRODUCTION

1.2 FORTRAN CHARACTER SET

The FORTRAN character set consists of twenty-six letters, ten
digits, and thirteen special characters.

A letter is one of the twenty-six characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A digit is one of the ten characters:

0123456789

An alphanumeric character is a letter or a digit.

A Special Character is one of the following characters:

CHARACTER MEANING
Blank
= Fquals
+ Plus
- Minus
* Asterisk
/ Slash
{ Left Parenthesis
] Right Parenthesis

Comma

Decimal Point
$ Currency Symbol
Apostrophe
Colon

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
INTRODUCTION

In ND FORTRAN the following spe

semicolon
percent

underscore
1 exclamation poin
o ampersand

o

2
O
fod
s d
e
o
L2
£
o}
ot
&
th

A.

their lowercase values. Otherwise

_ uppercase.

Scanned by Jonny Oddene for Sintran Data © 2011

6 ND-60.145.8 EN
INTRODUCTION

1.3 FORTRAN TERMS AND CONCEPTS

The basic language elements of FORTRAN, i.e., syntactic items, are
constants, symbolic names, statement labels, keywords, operators,
and special characters. These are all formed from the letters,
digits, and special characters of the FORTRAN character set
previously described in this chapter. The form of a constant is
described in Section 2.2. on page 29.

A symbolic name is a sequence of one to six letters or digits, the
first of which must be a letter. It can be used to identify a
global item, i.e., an item known to the whole executable program.
The following are global items:

e a common block

e an external function
e a subroutine

e a main program

e a block data subprogram

A symbolic name can also be used to identify a local item - one
whose scope is only that of the program unit in which it appears,
as listed below:

® an array
e a variable

e a constant

e a statement function
e an intrinsic function

e a dummy procedure

Any character except the’flrstfmay'be'an ande

A keyword is a word that is recognized by the compiler. Keywords
appear in capital letters throughout this manual.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 2
INTRODUCTION

Operators are described in Chapter 5, which begins on page 85.

1.3.1 Lines

A line in a program unit is a sequence of 72 characters. The
character positions in a line are called columns and are numbered
consecutively 1, 2, through 72, the sequential order being from
left to right. Lines are ordered in the same sequence as they are
presented to the compiler.

An initial line is any line that is not a comment line and
contains the character blank or the digit zero, in column 6.
Columns 1 to 5 may contain a statement label or they may all be
blank.

A continuation line is any line containing any character of the
FORTRAN character set other than a blank or a zero in column 6,
and containing only blanks in columns 1 through 5. A statement
must not have more than nineteen continuation lines.

With ND FPORTRAN, some of these strict reguiremernts are lifted.
An initial line may start at any column except column 6. A
label need not be restricted to columns 1 to 5, and a
statement may begin before column 7.

In ND FORTRAN the ampersand sign (&), may be used to indicate
that the next line is a continuation line.

A comment line is any line containing a C or an asterisk in column
1, or containing only blank characters in columns 1 through 72.
The remaining columns may contain any character which the compiler
can accept. Comment lines may appear anywhere within the program
unit.

Scanned by Jonny Oddene for Sintran Data © 2011

8 ND-60.145.7 EN
INTRODUCTION

In ND FORTRAN, eitlier a perce
{1}, may be used for inline o

50, 60, 70, s’é;" but
-ebeyﬂnd celumn ” < tab‘ éfh&rarc 8 ted as a blank. This
is true even within . character strlngs, H-format format items,

then ‘the next line

page on the source 1i

: iorus implementatons, but it 1s dlsccuraged ‘as normal

hsted but 1gnored

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 9
INTRODUCTION

1.3.2 Statements

An ANSI FORTRAN 77 source program consists of a set of statements
composed of keywords and other syntactic items as described above.
Most statements begin with a keyword which is then used as the
statement identifier. The exceptions are assignment and statement
function statements.

There are two basic types of statements, executable and nonexecu-
table.

Executable statements specify the actions to be taken during
execution of a program, i.e., the computation of values, input and
output operations, transfer of control within one program unit or
between program units etc. Executable statements are normally
executed in the sequence they appear in the program unit. They may
be labeled, and references to labels may be used to alter the
sequence of execution.

Nonexecutable statements specify characteristics, arrangement, and
initial values of data. They can also contain editing information,
specify statement functions, classify program units, and specify
entry points within subprograms. Nonexecutable statements are not
part of the execution sequence; they may be labeled but such
labels cannot be used to control the execution sequence.

A statement is written on one or more lines, the first of which is
called an initial line. Succeeding lines, if any, are called
continuation lines, Section 1.3.1. on page 7.

A statement label is a sequence of one to five digits, one of
which must be nonzero, and is used to identify a statement. The
statement label may be placed anywhere in columns 1 through 5 of
the initial line of the statement, Section 1.3.1. on page 7.

Statement labels provide a means of referring to individual
statements. Any statement can be labeled but the only ones which
can be referred to are labeled executable statements and FORMAT
statements.

Scanned-by-Jonny Oddene forSintran Data©@ 2044~~~

10 ND-60.145.8 EN
INTRODUCTION

The same statement label must not be given to more than one
statement in a program unit. Blanks and leading zeros are not
significant in distinguishing between statement labels.

1.3.3 Program Units and Procedures

A program unit consists of a sequence of statements and optional
comment lines. It is either a main program or a subprogram.

A main program contains the first executable statement of the
executable program. Its first statement can be a PROGRAM statement
but not a FUNCTION, SUBROUTINE, or BLOCK DATA statement.

A subprogram is a program unit having a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement.

A procedure is an intrinsic function, statement function,

subroutine, or an external function. Subroutines and external
functions are called external procedures.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 11
INTRODUCTION

1.3.4 Required Order of Statements and Lines

Within a program unit, the required order of statements and
comment lines, as described in ANSI FORTRAN 77, is summarized in
the diagram below:

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement
IMPLICIT
Statements
PARAMETER
Statements|Other
FORMAT Specification
Comment and Statements
Lines ENTRY
Statements Statement-
Function
DATA Statements
Statements
Executable
Statements

END Statement

In the diagram, vertical lines delineate varieties of statements
that may be interspersed. For example, FORMAT statements can be
interspersed with statement function-statements and executable
statements.

Horizontal lines delineate the kinds of statements that must not
be interspersed. For example, statement-function statements cannot

be interspersed with executable statements.

Note that the END statement is also an executable statement and
must only appear as the last statement of a program unit.

Scanned by Jonny Oddene for Sintran Data © 2011

12

ND-60.145.8 EN
INTRODUCTION

Comment
| Lines

and’

PROGRAM, FUNCTION, SUBROUTINE, or
‘BLOCK DATA Statément

fCompileri
Commands;

and
ENTRY

IMPLICIT
Statements

ther

Specifxcaton:

| PARAMETER
—4 Statements

Statements{

;Stabemants:

Statéments f

DATA

Statement=-

Functien

Statements

EXECHtable
Statements

EN@.Statement

statements

Comment lines may Follow the END statement.

Compiler commands may appear anywhere in the source program.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 13
INTRODUCTION

1.4 NOTES ON A SAMPLE PROGRAM

This section contains an example of a complete FORTRAN program.
The example illustrates a number of different features of the

language.

The numbers to the left of the FORTRAN statements are line
numbers, that are added by the compiler, to the listing of the
source program.

The example is followed by detailed comments explaining each line
of the program.

Scanned by Jonny Oddene for Sintran Data © 2011

14

1%

2%

3%
4%
5%

6 *

7%
8 *
9%
10%
11%
12*
13+
14%*
15%
16 %
17>
18%*
19%
20%*
21%
22%
23%
24 %
25%
26%*
27
28 %
29%
30%*
31x
32*
33%
34
35*
Je*
37+
38 *
39x
40*
41*
42%
43*
44
45
46 *
47%

10

40

50

500
510
900

999

ND-60.145.8 EN

PROGRAM SAMPLE

IMPLICIT INTEGER(R,0.Y.(G,B)

PARAMETER (RED=1,0RANGE=2,YELLOW=3,GREEN
INTEGER N(5) .M

CHARACTER GROUP*1 ,COLOUR*3
COMMON/SHARE/ AV

REAL X(5,20),R,Y,AV

DATA COLOUR/'ROYGB'/ ,X.,N/100%0.0,5*0/
IUNIT=60

INTRODUCTION

=4 ,BLUE=S5)

OPEN (UNIT=IUNIT,FILE='"READINGS:DATA' ,STATUS="0OLD",

FORM="'"FORMATTED' ,ACCESS="SEQUENTIA
ISOTAT=IERNAM ERR=900)
M=0
REAL (IUNIT,500,END=40) GROUP,R
K=INDEX(COLOUR,GROUP)

M=M+1
IF(K.EQ.QO) THEN

WRITE(1,*) "INVALID GROUP IDENTIFIER’
ELSE

N(K)=N(K)+1

X(K,N(K))=R

IF (K.EQ.ORANGE.OR.K.EQ.GREEN) THEN
N(K-1)=N{(K-11)+1

X(K-1,N(K-1))})=R
N(K+1)=N(K+1)+1
X(K+1 ,N(K+1))=R
ENDIF

ENDIF

GOTO 10

CONTINUE

WRITE(1, (16, '"READINGS ')) M

DO 50 K=RED,BLUE

CALL AVRAGE(X,N.K)

SDEV=VAR(X,N,K)

WRITE(1,510) COLOUR(K:K),N{K), LAV, KSDEV
CONTINUE
GOTO 999

FORMAT (A1 ,F5.2)

FORMAT(1H,A4 ,15,F9.2,'ST DEV:' ,E10.3)
CONTINUE

WRITE(1,*) OPEN ERROR - CODE IS:',IERNAM
CONTINUE

END

SUBROUTINE AVRAGE(X ,N,K)

Scanned by Jonny Oddene for Sintran Data © 2011

L',

ND-60.145.8 EN

INTRODUCTION

48* COMMON/SHARE/AV

49 % DIMENSION X(5,%) N(*)
S50* R=0.0

51% DO 10 I=1,N(K)

S52% R=R+X(K,I)

53 10 CONTINUE

S54% AV=R/N(K)

55%* END

56 %

ST* REAL FUNCTION VAR(V,M,J)
58%* DIMENSION V{5, ,*) M(%*)

59 % COMMON/SHARE/AV

60* VAR=0.0

61~* DO 10 I=1,M(J)}

62% VAR=VAR+(V(J,1)~-AV)**2
63 10 CONTINUE

64 VAR=SQRT(VAR/ (M(J)~-1))
65%* END

Ry QOddene for Sintran Data © 2011

15

16

Line 1:

Lines 2-7:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

ND-60.145.8 EN
INTRODUCTION

This line identifies the main entry point of
the program.

This part defines the variables used in the
program. This section must precede the
description of what the program does {the
‘algorithm') .

If variables have not been given a type
explicitly, then they receive their types
according to the first letter of their name.
Here, initial letters R, O, Y, G, B will imply
that the variables are of type INTEGER.

This statement assigns values to certain names.
These names are not normal variables, but are
used to give consistent names to constants.
For example, here the name GREEN will mean the
constant 4. The constants are of type INTEGER
because their first letters appear in an
implicit statement (see line 2).

Here an array is defined as having 5 elements
and name N; also a simple variable is defined
called M. Both these items are declared to be
of type INTEGER.

Two items of type CHARACTER are declared in
this line: one of length 1 and one of length 5.
Since this statement explicitly gives GROUP a
type, the IMPLICIT statement (line 2) does not

apply.

Here we have a COMMON block called SHARE. It is
known outside this program unit, and enables
variables to be shared between program units
(see lines 48, 59). The block contains only one
variable called AV in this program unit.

This defines 4 items to be of type REAL. One of
these (X) is a two-dimensional array. The first
subscript varies from 1 to 5 and the second
from 1 to 20. The name AV is the same as the
one in the COMMON block (line 6),and this
statement declares this COMMON variable to be
of type REAL.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
INTRODUCTION

Line 8:

Line 9:

Lines 10-12:

Line 13:

Line 14:

Line 15:

17

This statement gives values to 3 variables
initially. Before the program starts to
execute, the variable COLOUR will have the
value 'ROYGB'; all the 100 elements of X and
the 5 of N are given the initial value zero.

This is the first executable statement and
gives the value 60 to the variable IUNIT. Since
this variable has not been declared, and the
IMPLICIT statement (line 2) does not contain
the letter I, the default type is derived from
the I-N rule. This rule states that all
undeclared variables beginning with the letters
I, J, K, L, M, N are INTEGER and the rest are
REAL.

These 3 lines form one statement. The
continuation lines 1l and 12 have a character
in column 6 which is neither zerc nor blank (in
this case 1 and 2) which defines them as
continuation lines. This OPEN statement
prepares a file called READINGS:DATA for
sequential access, and it is shown containing
formatted data. If an error should occur (e.q.
the file does not exist) then the program will
continue at the statement labeled 900 (see line
42). Subsequent I/0 statements on this file
will use the same unit number (see line 14).

A simple assignment of zero to M.

This statement reads a single record from the
file identified by the unit number IUNIT. In
this case, this is associated with the file
READINGS:DATA by means of the OPEN statement
(see line 10). The record is interpreted
according to the FORMAT statement at label 500
{(see line 40). If there are no more records
left, then the program continues at statement
label 40 (see line 31). Two variables are read
in, GROUP and R. This statement has a label
(10) which other statements can reference (see
line 29).

The INDEX intrinsic function is invoked with
actual parameters COLOUR and GROUP. This
searches for the string contained in GROUP

18

Line 16:

Lines 17-28:

Line 18:

Line 19:

Line 20:

Line 21:

Lines 22-27:

Line 27:

ND-60.145.8 EN
INTRODUCTION

(let us say this is 'R') in the string
contained in colour (this is ‘ROYGB'). In our
example, the result would be 1 (the first
occurrence of 'R’ in 'ROYGB' is the first
character), and this would then be placed in K.
K is not declared, and receives the default
type INTEGER (see also line 9). INDEX is not
declared since it is an intrinsic function.

Adds one to M. (In this program M is used to
count the number of records read).

Here we have a block IF construct. Line 17 (the
IF) shows the test to be made. If K has the
value 0, then the THEN part is executed (line
18). Otherwise control goes to the ELSE clause
(l1ine 19) and proceeds normally to the ENDIF
(line 28). The indentations in the listing are
purely to help the reader so that the THEN and
ELSE clauses are easily seen.

This merely writes the character constant to

the user's terminal (unit 1). The * indicates
that free format (also known as list-directed
I1/0) is to be used.

See note on lines 17-28.

The first statement of the ELSE clause. It adds
1 to the K'th element of array N. N keeps a
count of how many of each type of reading is
recorded, the type being identified by K.

Puts the reading R into the appropriate
position in the table X. X has 2 dimensions.
The first subscript K identifies the group, and
the second N (K) identifies which position
within the group.

Another block IF; this time without an ELSE
clause. If K has the value ORANGE or GREEN then
the reading is also placed in the previous and
succeeding groups. Otherwise nothing is done
here.

Terminates the block IF in line 22.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 19
INTRODUCTION

Line 28: Terminates the block IF in line 17. Note how
one block IF is completely nested within one
clause of another block IF.

Line 29: Directs the execution of the program to label
10 (line 14) where the next record is to be
read. The repeated execution of lines 14
through 29 is only halted by the END clause in
line 14, which will cause execution to jump to
label 40 {(line 31).

Line 30: Blank lines are treated as comments. They can
be placed anywhere to make the listing easier
to read.

Line 31: The CONTINUE statement does nothing itself.

Here it is simply used so that the label 40 can
be positioned. Note that the label 40 could
have been placed on the WRITE statement in line
32 instead.

Line 32: Writes to the user's terminal (unit 1). The
format used is written here as a character
constant, the value of which is (16,
'"READINGS'). There is only one value, M, to be
written. Thus M is written according to the
format item I16. It is then followed by the
characters READINGS.

Lines 33-37: This is a DO-loop. It begins with the DO
statement (line 33) which identifies the end as
a statement label 50 (line 37). K is the
control variable of the loop. It starts with
the value RED, and increases each time the loop
is repeated until it is greater than BLUE.
Since no increment is specified, it is taken to
be 1. Thus after control has passed through the
lines 34 to 37, K is increased by 1 and control
resumes at line 34. When K exceeds BLUE,
program execution leaves the loop, and
continues after statement label 50 (i.e., at
line 38).

Line 34: This is how subroutines are called. The name
AVRAGE has no declaration, and because it
occurs in a CALL statement, it is by default
the name of an EXTERNAL program unit, known as

20

Line 35:

Line 36:

Line

Line

Line

Line

Line

37:

38:

39:

40:

41:

ND-60.145.8 EN
INTRODUCTION

a SUBROUTINE. It has 3 actual parameters (see
also line 47).

The variable SDEV receives the value returned
by the function VAR. VAR is not declared as an
array but appears followed by a parameter list.
It is therefore by default EXTERNAL, and a
FUNCTION. It returns a single value, and the
type of this value is implied in the normal way
as for variables; in this case it is REAL
because the letter V is not in the range I-N,
nor does it appear in an IMPLICIT statement.
There are three actual parameters X, N and K.
The name SDEV is not declared, but is
implicitly a variable of type REAL.

This line writes the results of the
computations to unit 1 (the user's terminal)
according to the format at label 510. The first
value written is the group letter, which is the
substring taken from COLOUR starting and ending
with the K'th (i.e., just one) character. The
next value is the count of readings in each
group taken from the array N. Then the average
which was computed by the subroutine AVRAGE and
left in the COMMON block. And finally the
standard deviation as calculated by VAR and
returned to SDEV in line 35.

The end of the DO-loop which starts at line 33.
Once again, the CONTINUE statement is simply in
order to place the statement label here.

A simple jump to avoid the error-handling
routine to label 999 (line 44).

Another blank line of no significance.

Defines the format of the input records (used
in line 14). There is a field of length 1 used
as a literal character (Al); and a field of
width 5 treated as a fixed-point number, with
an implied position of the decimal point 2
digits from the right-hand end if no point is
present explicitly.

Defines the output format, consisting of 6

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 21
INTRODUCTION

separate fields. "1H" puts a blank in the first
position.

Since the user's terminal is being written to
(see line 36), this first character is used as
a "forms control character"; a blank means
start on the next line. Then follow data
formats of type character (A4), integer (I5),
and fixed-point (F9.2). Next is a literal
string and finally a field with an exponent
(E10.3).

Line 42: The start of the error handling. The statement
label 900 is referred to by line 12.

Line 43: An error message is written in free format to
the user's terminal (unit 1). If an error in
the OPEN statement is found, the IOSTAT status
specifier indicates that an error code should
be stored in the variable IERNAM. This is then
written out by means of this WRITE statement.

Line 44: A CONTINUE statement to hold the position of
label 999.
Line 45: An END statement marks the end of this program

unit. The lines 1 to 45 could be compiled as a
separate job.

Line 46: Insignificant blank line.

Line 47: A new program unit is started. It is a
SUBROUTINE with the name AVRAGE and uses 3
dummy arguments called X, N, and K.

Line 48: A COMMON block is defined called SHARE,
containing one variable called AV. (The name
SHARE is what connects this COMMON block with
the one in the other program units 3 (lines 6
and 59} .)

22

Line 49:

Lines 48-49:

Line 50:

Lines 51-53:

Line 54:

Line 55:

Line 56:

Line 57:

ND-60.145.8 EN
INTRODUCTION

Declares X and N to be arrays. Since they are
dummy arguments, the last upper bounds can be
left free; this is what the * means.

There are no type statements here, so all
variables will take the implicit types defined
by their initial letters. In this program unit
there are no IMPLICIT statements, therefore
only the I-N rule is used. (Compare with line
9. Note that line 2 is no longer valid. Its
range stopped with the END at line 45.)

Initializes the REAL variable R to zero.

A DO-loop to add up the N(K) values in X from X
{K,1) to X (K, N (K}}. The sum is accumulated
in the variable R.

Compute the average and place it in the
variable AV, in the COMMON block where it is
available to the other program units.

Terminate this program unit. When program
execution reaches this point, it returns to
where the program unit was called from and
continues from there. (In this example there is
only one point where a CALL statement is used,
line 34.)

Another blank line.

VAR is declared to be the symbolic name of a
FUNCTION which returns a REAL value and uses 3
dummy arguments called V, M, and J. By
comparing the call in line 35 with this
definition, it can be seen that the dQummy
argument V is a reference to the actual
argument X, similarly that M refers to N, and J
to K.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
INTRODUCTION

Lines 58-59:

Line 60:

Lines 61-63:

Line 64:

Line 65:

23

The same comments apply as for lines 48-49.

Initializes the return value to zero, VAR being
the name of this FUNCTION.

A DO-loop to sum the squares of deviations for
the J'th group. Note that it is assumed that AV
has been set before the function is invoked.

An extraction of the square root completes the
evaluation of the standard deviation. SQRT is
an intrinsic function and here the actual
argument is an expression. In this expression,
the numerator is REAL, but the denominator is
of type INTEGER, so it is converted to REAL
before the division is done.

The END of this program unit. When the
execution comes here, the value in VAR is taken
as the value of the function and is sent back
to the program unit that called the function.

Scanned by Jonny Oddene for Sintran Data © 2011

24

ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 25

CHAPTER 2

DATA TYPES. CONSTANTS. VARIABLES. ARRAYS AND SUBSTRINGS

26

ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data @ 2014

ND-60.

145.8 EN

DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.1 DATA TYPES

There

are six data types defined in ANSI FORTRAN 77:

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL
CHARACTER

In ND FORTRAN, there are further types:

INTEGER*1 (ND-500 only), INTEGER*2, INTEGER*4

DOUBLE INTEGER
REAL*4, REAL*6 REAL*S
COMPLEX”* S8, COMPLEX*12 COMPLEX*16, DOUBLE COMPLEX

LOGICAL*1 (NB-500 only}, EOGIGAL*2, LOGICAL*4

NUMERIC (ND-500 only)

These are fully described in Section 3.4. on page 57.

Each type has its own internal representation; for storage
mapping see Appendix E. Appendix E also describes ‘the default
data types for the ND-100 and the ND~500.

Scanned by Jonny Oddene for Sintran Data © 2011

28 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.1.1 Type rules for identifiers

A symbolic name identifying a constant, variable, array, external
function, or statement function can have its type declared in a
Type statement, see Section 3.4. on page 57.

In the absence of an explicit declaration in a Type statement, the
type is implied by the first letter of the name. A first letter of
I, J, K, L, M, or N implies type integer and any other letter
implies type real, unless an IMPLICIT statement is used to change
the default implied type, see Section 3.5. on page 66.

The data type of an array element name is the same as the type of

its array name. The data type of a function name is the type of
the data item supplied by the function reference in an expression.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 29
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2 CONSTANTS

A constant is an arithmetic constant, logical constant, or
character constant. Constants do not change their value during
execution of the object program. A PARAMETER statement enables a
constant to be given a symbolic name, see Section 3.6. on page 68.

The value range for each type of constant J.s nat spec;.fied in
the ANSI FORTRAN 77 standatd and varies according to machine
implementation. The ' ‘ P

the ND~100 unless otl

2.2.1 Integer constants

The form of an integer constant is an optional sign followed by a
string of digits.

In ND FORTRAN, integers have ‘either the t.yrpe
INTEGER*4, see the Type statement { -
57). On the ND-500, the defa. :
INTEGER*4, n tk G ¢
can be changed by the BEFA i
FORTRAN User Guide, RD-60.265.

The values must lie between -2147483648 and +2147483647 inclusive.
If the number lies within the inclusive range: -32768 to +32767
and the number of digits used is 5 or less, then the data type is
the default INTEGER type. Otherwise it is INTEGER*4.

Scanned by Jonny Oddene for Sintran Data © 2011

30 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

Example:

) is INTEGER
32000 is INTEGER
-127 is INTEGER

1234567 is INTEGER™*4
-98765 is INTEGER™*4 { <« -32768)
000002 is INTEGER*4 (> 5 digits used]

An integer data item is always an exact representation of an
integer value.

In NP FORTRAN, integers can be represented as octal numbers.
These are a string of digits in the range 0 to 7 inclusive,
followed by the letter B Octal numbers must be unsigned and

The values must lie in the range O to 37777777777B. If the
number lies within the range 0 to 177777B and the number of
digits used iz 6 or less, then the data type is the default
INTEGER. Otherwise it is INTEGER*4.

Example:

1B is INTEGKER

1234568 is INTEGER
FE567098 is INT’ :EH*4 £ 1777773}
OOGOP028

In ND FORTRAN, an integer constant may be written as a
hexadecimal constant. This is a string of hexadecimal digits
starting with a decimal dxgxt and ending with a X.

Example:

OAOX
1ABCX

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 31
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2.2 Real constants

The form of a basic real constant is an optional sign, an integer
part, a decimal point, and a fractional part, in that order. Both
the integer part and the fractional part are strings of digits;
either of these parts may be omitted but not both.

A real exponent consists of the letter E followed by an optionally
signed integer constant. A real exponent denotes a power of ten.

A real constant takes any of the forms:

e Basic real constant.

e Basic real constant followed by a real exponent.

e Integer constant followed by a real exponent.

The value of a real constant containing a real exponent is the

product of the constant preceding the E and the power of ten
indicated by the integer following it.

In ND FORTRAN, the absolute value of a real constant muet be
zero or lie betweers 10 ** -76 and 10 ** +76.

Scanned by Jonny Oddene for Sintran Data © 2011

32 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

Examples of real constants are:

3.1415927
-728.998
-.1
10E43
0.2718283E+1
1557.4077E-3
+1.E-10

A real value is an approximation to the actual value of a
mathematical expression.

2.2.3 Double-precision constants

The form of a double-precision exponent is the letter D followed
by an optionally signed integer constant. The exponent denotes a
power of ten. A double-precision exponent is identical to a real
exponent apart from the use of a D instead of an E.

A double-precision constant can take one of the forms:

e Real constant followed by a double-precision exponent.
¢ Integer constant followed by a double-precision exponent.
The value of a double-precision constant is the product of the

constant preceding the D and the power of ten indicated by the
integer which follows it.

' In ND FORTRAN, the range of values of double-precision data
items is the same as for real data items, but the accuracy is-
greater, being 16 decimal digits.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 33
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

Examples:

2.302585092994046D0
-.1D20

+123.4D-04
0.12345678901234567890123456789D+21

Note that more digits than those of the accuracy limit may be
written, the value of the constant being suitably approximated.

The range of double-precision exponents is -76 to +76.

2.2.4 Complex constants

The form of a complex constant is a left parenthesis followed by
an ordered pair of real or integer constants separated by a comma,
and followed by a right parenthesis. The first constant of the
pair is the real part of the complex constant and the second is
the imaginary part.

Example:

(o, 1)

(0.0, 1.0)
(3.1415927, 0)
(2.71828, 1.0E10)
(-1, +2.3E-1)

QF In
constants, at least one of

Example:

(0, 1.D0)
(3.14159D-1, 1.4142D+1)

Scanned by Jonny Oddene for Sintran Data © 2011

34 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.2.5 Logical constants

The forms and values of a logical constant are:

FORM VALUE
. TRUE. true
.FALSE. false

In ND FORTRAN, the default data type of a logical constant
depends on the computer. Thus:

ND-500 uses LOGICAL*4 N}.Q and NP~100 uses LOGICAL*2.

However, the default may be changed by the DEFAULT command,

see Chapter 3 in the ND FORTRAN User Guide, ND-60.265.

2.2.6 Character constants

The form of a character constant is an apostrophe followed by a
string of characters followed by an apostrophe. The string may
contain any ASCII characters except CR (octal 15), LF (octal 12)
or HT (octal 11).

The delimiting apostrophes are not part of the data item. Embedded
apostrophes are represented by two consecutive apostrophes without
intervening blanks. In a character constant, embedded blanks
between the delimiting apostrophes are significant.

The length of a character constant is the number of characters
between the delimiting apostrophes, except that each pair of
consecutive apostrophes counts as a single character. The
delimiting apostrophes are not counted.The length of a character
constant must be greater than zero.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

Hawever, in ND FQR‘I‘RAN, a str.ing »:ef?_characters may be of
length ZEro.

Examples:

String as Written Value

"ABC’ ABC

I AM GREAT’ I AM GREAT
"I''M THE GREATEST'

I M THF CHEATEGT

?

See Appendix E for the internal representation of character
strings.

Scanned by Jonny Oddene for Sintran Data © 2011

35

36 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.3 VARIABLES

A variable is a data item having both a name and a type. Its value
can be changed during the execution of a program.

Its name is a symbolic name and its type can be optionally
specified by the appearance of the symbolic name in a Type
statement. Otherwise its type is implied as being INTEGER or REAL
by the first letter of its name, (see Section 2.1.1 on page 28),
unless this is overidden by use of the IMPLICIT statement.

During the execution of a program, a variable may contain a
defined or an undefined value. Before a value has been assigned to
it, a variable will contain an undefined value, and any reference
to it will produce an unpredictable result.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 37
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4 ARRAYS

An array is an ordered set of data identified by an array name.
Array names are symbolic names which must conform to the rules
given in Section 1.3. on page 6.

The number of data items (or elements - see Section 2.4.1 on the
next page) in an array is given by an array declarator having the
form:

a (d[, dl)
where
a is the symbolic name of the array.
d is a dimension declarator, the number of these specified

being equal to the number of dimensions of the array.

The form of the dimension declarator is:

d

[a]

where

d1 is the lower dimension bound.
d is the upper dimension bound.

The lower and upper dimension bounds are arithmetic expressions
and are described in Section 3.1 on page 45.

Scanned by Jonny Oddene for Sintran Data © 2011

38 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

Examples of array declarators:

TABLE (2, 3, 4]
ARRAY (M1 : M2, M3 : M{]

The size of an array is equal to the product of the sizes of the
dimensions specified for that array by its array declarator.
Thus, in the first of the above examples the array size would be
2x3x4 = 24. The size of an array is equal to the number of
elements it contains.

2.4.1 Array elements

Each item of data in the array is known as an array element. An
array- element name, by which an array element is referenced, is
the array name qualified by a subscript. The form of an array
element name is:

a (s . sl ...)

where

a is the array name.

{ s [, s] ...) is a subscript where each s is an integer
expression, referred to as a subscript
expression.

A subscript expression can contain array element references and
function references. The number of subscript expressions in the
subscript must equal the number of dimensions declared for the
array (see above).

Examples of array element names:
TABLE [I/K ** 2, L)

ARRAY1 (I + ARRAY2 (J*K, L] , M }

 In ND FORTRAN, reference to a multi-dimensioned array may alsoc
be made as though it were an array of only one dimension. In
'ghis[caseffthé array. element xeférEHCed is given by the order

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 39
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

.subscrlpt of the flrst elemen’c bemg the 1awer
first dlmension . -

2.4.2 Order of stored array elements

The elements of an array are arranged in storage in ascending
order with the value of the first subscript varying most rapidly.

For example, elements of the array:

1 (2, 3)
are stored in the order:

I (1,1), 1 (2,1}, I (1,2}, I (2,2}, I (1,3), I (2,3)

2.4.3 Adjustable arrays

An adjustable array has an adjustable array declarator, i.e. one
having dimension declarators containing variable names.

Note that adjustable arrays may only be used for dummy argument
declarations within subprograms, see Section 11.1 on page 234.

Scanned by Jonny Oddene for Sintran Data © 2011

40 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.4.4 Assumed-size arrays

An assumed—-size array is a constant array declarator or an
adjustable array declarator, except that the upper dimension bound
of the last dimension is an asterisk. The asterisk means that
there is no declared upper limit of the array index. This does not
change the requirement that the dummy argument must be wholly
contained within the actual argument.

Note that assumed-size arrays may only be used for dummy argument
declarations within subprograms, see Section 11.1 on page 234.

2.4.5 Actual and dummy array declarators

Each array declarator is either an actual array declarator or a
dummy array declarator.

An actual array declarator is one in which each of the dimension
bound expressions (see Section 3.1 on page 45). is an integer
constant expression. A dummy array declarator on the other hand,
may be a constant array declarator, an adjustable array declarator
or an assumed-size array declarator.

For more detailed descriptions, see Section 11.1. on page 234.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 41
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

2.5 CHARACTER SUBSTRINGS

A character substring is a contiguous portion of a character
variable or character array element. The name of the substring may
be referenced and have values assigned to it.

The substring name can take the forms:

v ([e I - Le 1)

2

or

a (s, s] ...00 81] A e2])

where
v is a character variable name.
a { s, s]l...) is a character array element name.

e ,e, are each integer expressions called substring expressions.

e 1indicates the leftmost character position of the substring and
e’ the rightmost. For example, A (2:4) specifies the

characters in positions 2 through 4 of the character variable A,
while B (4,3) (1:6) specifies characters in positions 1 through 6
of the character array element B (4,3).

and e, must be within the limits:

e
1< e, < e, < maximum string length

If e, exceeds the maximum string length, results are
unpredictable.

If e, is omitted, a value of 1 (one) is assumed for it.

eneforSintran Data © 2011

|

\

‘
w
@
®

5

D
®
Q
)
©
b
5
O
a
a

42 ND-60.145.8 EN
DATA TYPES, CONSTANTS, VARIABLES, ARRAYS AND SUBSTRINGS

If e is omitted, then its assumed value is that of the length
of the character variable or array element. Both e and e, may be
omitted.

A substring expression may be any integer expression. It can
contain array element references and function references.

In ND FORTRAN there are two spacial values to riote:

o 1f e, is a constant ekxpression whose value is -1, then
it is interpréted as the position of the first non-blank

character in the string.

e If ¢ is a constant expression whose value is -1, then
it i interpreted as the position of the last non-blank
character in the string.

Thus, A (-1:-1) strips off leading and trailing blanks.

Scanned by Jonny Oddene for Sintran Data © 2011

ND~-60.145.8 EN

CHAPTER 3

SPECIFICATION STATEMENTS

43

ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 45
SPECIFICATION STATEMENTS

FORTRAN specification statements specify storage allocation, type
characteristics,and data arrangement. The different specification
statements are:

e DIMENSION

e EQUIVALENCE

e COMMON

e Type statements

e IMPLICIT

e PARAMETER

e EXTERNAL

e INTRINSIC

e SAVE

» ASSEMBLY

All specification statements are non-executable.

3.1 THE DIMENSION STATEMENT

The DIMENSION statement provides the symbolic names and dimension
specifications of arrays. Its form is:

DIMENSION ad [, ad]...

where

each ad is an array declarator of the form a(d,[, d]...)},
Section 2.4, on page 37. Note that array declarators
may also appear in COMMON statements and Type statements.

Scanned by Jonny Oddene for Sintran Data © 2011

46 ND-60.145.8 EN
SPECIFICATION STATEMENTS

Each a appearing in a DIMENSION statement is the symbolic name of
an array in the same program unit. Each d is a dimension
declarator, and the number of dimensions of the array is the
number of dimension declarators in the array declarator. The
minimum number of dimensions is one and the maximum is seven.

The form of a dimension declarator is also given in Section 2.4,
on page 37. Each dimension may be expressed as having two bounds,
a lower and an upper, separated by a colon. The value of either
bound may be positive, negative, or zero. If only the upper bound
is given, then the value of the lower bound is one.

Dimension bounds are arithmetic expressions in which all constants
(or their symbolic names) and variables are of type integer. The
upper dimension bound of the last dimension may be an asterisk.
The array declarator containing an asterisk in its last dimension
bound may or may not be adjustable, see Section 2.4.3, on page

39. In an adjustable array, those dimension declarators that
contain a variable name are called adjustable dimensions.

For example, in the statement:

DIMENSION PAGE (60), PROF (10, 12)

the array PAGE has 60 elements and 1 dimension. PROF is a two-
dimensional array whose total size is:

10 x 12 = 120 elements

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 47
SPECIFICATION STATEMENTS

The statement:
DIMENSION TABLE (-1 : 10, 0 : 9]

defines a two-dimensional array called TABLE. The first subscript
may vary from -1 to 10 (i.e., 12 values) and the second subscript
varies from 0 to 9 (i.e., 10 values) giving a total size of 120
elements.

The following code:

SUBROUTINE SUB (A, ROWS, COLS)
INTEGER ROWS, COLS
DIMENSION A (ROWS, COLS)

defines a dummy argument as an adjustable array whose size is
given by further dummy arguments.

For example, if ROWS = 4 and COLS = 5 on one entry to SUB, then
the size of A is 4 x 5 = 20 elements with the bounds of 4 and 5
remaining constant for this invocation, even though ROWS or COLS
may receive new values during it. If, when it is called next time,
ROWS = 3 and COLS = 2, then these bounds will hold for this new
invocation.

In the next example:

SUBROUTINE CALC (TAB)
COMMON/CM/LEN
DIMENSION TAB (O : LEN*(LEN + 1)/2,*)

TAB is an assumed-size array. The first upper bound is an integer
expression, and the second upper bound is left free. Note that in
these two last cases the bounds of the arrays are redetermined
each time the subroutine is invoked, but that they remain fixed
throughout each invocation.

Scanned by Jonny Oddene for Sintran Data © 2011

48 ND-60.145.8 EN
SPECIFICATION STATEMENTS

3.2 THE EQUIVALENCE STATEMENT

The EQUIVALENCE statement is used to specify that storage is
shared by two or more variables, arrays, or character substrings.

An EQUIVALENCE statement has the form:

EQUIVALENCE (list)] [, (1list]]

Each list must contain at least two names. Names of
dummy arguments are not allowed. Any subscript or substring
expression in the list must be an integer constant expression.

If equivalenced items are of different data types, no type
conversion is performed.

Example:

INTEGER*4 INT4

LOGICAL*4 LOG4

LOGICAL*2 LOG2

DOUBLE PRECISION RLS8

EQUIVALENCE (INT4,L0G4),[LOG2,RLS)

The first pair of variables in the EQUIVALENCE statement, INT4 and
LOG4, requires exactly the same storage, they will overlap
exactly, The second pair, require different amounts of storage,
LOG2 requires 16 bits and RL8 requires 64 bits, but LOG2 and RL8
will begin at exactly the same place in memory.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 49
SPECIFICATION STATEMENTS

3.2.1 Array Names and Array Element Names

If an array element name occurs in an EQUIVALENCE statement, the
number of subscript expressions must be the same as the number of
dimensions specified in the array declarator for that array name.
The use of an array name unqualified by a subscript in an
EQUIVALENCE statement has the same effect as specifying the first
element of the array.

3.2.2 Character Variables in EQUIVALENCE Statements

Items of type CHARACTER may be equivalenced only with other items
of type CHARACTER.

Example:

CHARACTER A*4, B*4, C[(2]*3
EQUIVALENCE (A, ¢ (1)), (B, € (2))

The sharing of storage can be illustrated as follows:

|o1|oz| 03] 04| 05| 06| 07|

[s¢]

F—c(1)4—c(2)—]

Scanned by Jonny Oddene for Sintran Data © 2011

50 ND-60.145.8 EN
SPECIFICATION STATEMENTS

In ND FORTRAN, the restriction on eqmvalenmng CHARACTER cmly
with CHARACTER is lifted. However, an ari {
item may not beg

the following is acceptable

INTEGER ¥
CHARACTER*10 C :
EQUIVALENCE (g, ¢ (2 : 3))

since C can start at an odd hyte 50 that. K wili st :
even byte.

INTEGER K, N - . L . .
CHARACTER*10, C .
EQUIVALENCE (K, € {1 : 2}] {N’ c (2 }j o

is not allowed, since thetre is no way of avo: :-ic}';ne_: of

either K or N starting at an odd byte.

On the RD=500, this sa.tuauen producaes an extens cm message.
not an error.

3.2.3 Restrictions on EQUIVALENCE Statements

An EQUIVALENCE statement must not specify that consecutive storage
units are to be nonconsecutive as in:

REAL A (2)

DOUBLE PRECISION D(2)
EQUIVALENCE (A (1), D (1)), (A (2), D (2))

. ScannedbyJonny-OddeneforSintranbatao0-2044— —

ND-60.145.8 EN 51
SPECIFICATION STATEMENTS

Nor may the same storage unit be specified more than once in a
storage sequence, as in:

DIMENSION A (2)
EQUIVALENCE (A (1), B), (A (2}, B)

However, there are several ways of specifying essentially the same
equivalence information.

Example:

REAL A (20), B (10)

EQUIVALENCE (A (1), B (1)), (A (2], B (2))

Also, more than one list can refer to the same storage unit as in:
EQUIVALENCE (A,B,C), (A,D), (B,E,F], (C,G), (E,H)

which is the same as:

EQUIVALENCE (A,B,C,D,E,F,G,H)

Scanned by Jonny Oddene for Sintran Data © 2011

52 ND-60.145.8 EN
SPECIFICATION STATEMENTS

3.3 THE COMMON STATEMENT

The COMMON statement enables storage to be shared by different
program units. This allows the program units to define and
reference data without using arguments.

The form of the statement is:

coMMoN [/l ebl/] 1ist[[,]1/[cbl/1ist]

where
cb is a COMMON block name.
list is a list of variable names, array names, and

array declarators.

If the COMMON block name is omitted, the blank COMMON block will
be used. If the first COMMON block name is omitted, the first two
slashes are optional.

In each COMMON statement, items whose names appear in a list are
declared to be in the immediately preceding COMMON block. If the
first COMMON block name is omitted, then the items in the first
list appear in blank COMMON.

Any COMMON block (including blank COMMON) may occur more than once
in one or more COMMON statements within a program unit. The list
following each successive appearance of the same COMMON block name
is treated as a continuation of the list for that COMMON block.

Only one appearance of a symbolic name as a variable name, array
name, or array declarator is permitted in all such lists within a
program unit.

Dummy arguments must not appear in the list.

If a character variable or a character array is in a COMMON block
then all items in the block must be of type character.

lglnnny Oddene for Sintran Data © 2011

A
Yoot

ND-60.145.8 EN 53
SPECIFICATION STATEMENTS

In ND FORTRAN, th

c:hamctar da*!:a' types in

3.3.1 COMMON Block Storage Sequences

During compilation of a source program, a storage sequence is
formed for all items in the lists for a particular COMMON block.
The order of the sequence is the same as the order of appearance
of the lists. The sequence is further extended to include the
storage for any storage sequence associated with it by equivalence
association.

Storage sequences of all COMMON blocks with the same sequences
have the same first storage unit. The storage sequences of all
blank COMMON blocks also have the same first storage unit as each
other. This results in the association of data in different
program units.

For example, with the following code:

PROGRAM MAIN
COMMON / CM / MA, MB, MC

SUBROUTINE SUB
COMMON / CM / NA, NB, NC

MA and NA will share the same storage, as will the pairs MB, NB
and MC, NC.

Scanned by Jonny Oddene for Sintran Data © 2011

54 ND-60.145.8 EN
SPECIFICATION STATEMENTS

3.3.2 Differences between Named COMMON and Blank COMMON

e COMMON blocks of the same name must have the same size
wherever they appear. Blank COMMON blocks may be of different

sizes.

e Items in named COMMON blocks may be initially defined by a
DATA statement in a BLOCK DATA subprogram.

Note that in the ANSI FORTRAN 77 standard, initialization of
named COMMON blocks is restricted to BLOCK DATA subprograms
and blank COMMON blocks cannot be initialized by DATA
statements.

e Execution of RETURN and END statements can cause items in
named COMMON blocks to become undefined but not items in blank
COMMON.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.7 EN 55
SPECIFICATION STATEMENTS

3.3.3 Restrictions on COMMON and EQUIVALENCE

An EQUIVALENCE statement must not cause the association of the
storage of two different COMMON blocks in the same program unit.
Furthermore, EQUIVALENCE association must not cause storage
extension to precede that of the storage of the first item in a
COMMON statement.

Example:

COMMON / X / A

REAL B (2)
EQUIVALENCE (A, B (2)])

is not permitted.

3.3.4 COMMON Blocks in APT

Scanned by Jonny Oddene for Sintran Data © 2011

56 ND-60.145.8 EN
SPECIFICATION STATEMENTS

n must be a decimal or octal integer constant
name. '

COMMON/* 100@3/,4 E, ;c- .

Places A, B and C in the APT from octal adﬂress lODG

varlables, due to the dlfficultles of addressing them They
are restricted to the following uses:

e In expressions

e On the left of assignment statements

o As actual arguments to subroutines and funct;ons, if they are
simple variables or array elements

e In WRITE and READ statements {(but not arrays)
¢ Any data type, but not character

where L . . o
n iﬁwthe.page table to use. (See also the SINTRAN
ey renceuMan'al ND~60 128}

'Béfé-lf- any o file subsystem ionitor calls {e.g.
RFILE), ”’Ehe \PT must be disabled by:

instated by:

CALL ALTON' n}
T .s__s@annéa—byﬁm;ny_odde;m@psmenoataﬂznﬂ -

ND-60.145.8 EN 57
SPECIFICATION STATEMENTS

3.4 TYPE STATEMENTS

A Type statement is used to override or confirm an implicit type.
It may also provide dimension information.

The appearance of the name of a variable, array, statement
function, external function, or a constant in a Type statement,
specifies the data type for that name for all occurrences of it in

a program unit.

The name of a main program, subroutine, or block data subprogram
must not be used in a Type statement.

Scanned by Jonny Oddene for Sintran Data © 2011

58 ND-60.145.7 EN
SPECIFICATION STATEMENTS

3.4.1 INTEGER, REAL, DOUBLE PRECISION, NUMERIC, COMPLEX
and
LOGICAL Type Statements

These statements have the form:

type var [/value/] [,varl/value/]1]...

where

type is one of INTEGER, REAL, DOUBLE PRECISION,
NUMERIC (fw,sc), COMPLEX and LOGICAL.

NUMERIC (fw,sc) is also used to specify entities of packed decimal
format also known as BCD (Binary Coded Decimal). This is a fixed
format, where fw (field width) specifies the number of digits in
the entity, and sc (scaling factor) specifies the number of

digits to the right of the decimal point. This type should be used
mainly when mixing routines within COBOL and FORTRAN.

var is a variable name, array name, array declarator,
function name, dummy-procedure name, or the symbolic
name of a constant.

- R ééé g S

ND-60.145.8 EN 59
SPECIFICATION STATEMENTS

INTE@Eﬁ*z .a?
INTEGER*z
INTEGER" 4
DOUBLE INTEGER

respects 3

"REAL* 4
REAL*6 the same as REAL

REAL*S8 the same as DOUBLE PRE!
NUMERIC (fw,sc) (ND-500 only)
camPLEL the same as'C@MPLEX;_'”

COMPLEX* 12
COMPLEX* 16
POUBLE COMPLEX 'the same ds COMPLEX”16

LOGIC’AL*;! - occapies 1 byt:e of 3taragﬁ (ND—S@O 7}

LOGICAL*2 'OCCLIPJ.&S 2 bytes af st,

LOGICAL" 4 occupies 4 bytes of storage

During the evaluation of an arlthmatm exp]
of implied conversion ise

INTEGER*1

INTEGER* 2

INTEGER*4

REAL

DOUBLE PRECISION _ : .
NUMERIC (fw,sc) . . __i_:-' .
COMPLEX . . .

Scanned by Jonny Oddene for Sintran Data © 2011

60 ND-60.145.8 EN
SPECIFICATION STATEMENTS

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 61
SPECIFICATION STATEMENTS

3.4.2 CHARACTER Type Statement

The form of this statement is:

CHARACTER [*length [,]] name [/value/ll ,namel /value/]]...

where

name can take the form of:

v [*Ilength]

or

a [[d]][*length]

v is a variable name, function name, dummy procedure
name, or the symbolic name of a constant.

a is an array name.
a (d) is an array declarator.
length is the length (number of characters)} of the

associated name. It is one of the following:

e An unsigned, non-zero, decimal integer constant.

e An integer constant expression within parentheses and
having a positive value.
e An asterisk in parentheses, (*).

Scanned by Jonny Oddene for Sintran Data © 2011

62 ‘ ND-60.145.8 EN
SPECIFICATION STATEMENTS

A length specification immediately following the word CHARACTER
applies to each item in the statement without a length specifica-
tion of its own. If this length specification does not appear,
then the default length is one.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 63
SPECIFICATION STATEMENTS

Example:
CHARACTER*3 A, B*4, C

defines A, B and C as character strings of lengths 3, 4 and 3
respectively. Also:

CHA'ACTER A, B*4, C

gives A, B and C lengths of 1, 4 and 1 respectively.

A length specification must be an integer constant expression
except for external functions, dummy arguments of external
procedures, or character constants having a symbolic name.

If the length of a dummy argument is declared as (*) then it
assumes the length of the associated actual argument for each
reference of the subroutine or function. (When the associated
actual argument is an array name then the length of an element of
the array is assumed.)

Example:

SUBROUTINE S (C)
CHARACTER C*(*]

PROGRAM MAIN
CHARACTER A*4, B*9
CALL S(A) CALL S(B)

In the above code, the first time S is called, the dummy argument
C identifies with A, and so has a length of 4; the second time, it
takes the length of B, i.e., 9.

If the length of an external function is declared in a function
subprogram as (*) then the function name must appear in a FUNCTION
or ENTRY statement in the same subprogram. On execution of such a
function reference, the assumed length is that specified in the
referencing program.

Scanned by Jonny Oddene for Sintran Data © 2011

64 ND-60.145.8 EN
SPECIFICATION STATEMENTS

The length given for a character function in a referencing program
must be an integer constant expression that agrees with the length
given in the specifying subprogram.

Example:

FUNCTION NAME
CHARACTER *(*) NAME
NAME = TAB (I)
RETURN

END

SUBROUTINE PERSON
EXTERNAL NAME
CHARACTER NAME*25, PN*25

SUBROUTINE FIRM
EXTERNAL NAME
CHARACTER"*35 NAME, FN

In the above, when NAME is called from PERSON, its length is 25.
When it is called from FIRM, its length is 35. Within both PERSON
and FIRM, NAME must be declared with a constant length and not
with an asterisk (*).

If a character constant with a symbolic name has its length

declared as (*), then the constant assumes the length of its
corresponding constant expression in a PARAMETER statement.

For example, in the code:

CHARACTER HEAD *(*))
PARAMETER (HEAD = 'TOTALS-BY-MONTH')

the length of HEAD becomes 15.

ND-60.145.8 EN 65
SPECIFICATION STATEMENTS

A character statement function or the character dummy argument of
a statement function must have a length which is an integer
constant expression.

For example, if we have:

CHARACTER DIGITS*10, MNAMS*50

CHARACTER*3 MONTH, DAY*2, DATE*6, DD*2, DM*3

DATA DIGITS/' 0123456789' /, MNAMS/'JAN FEB MAR...DEC'/

DAY (I) = DIGITS (I1/10+1:1/10+1)//DIGITS (MOD(I,10}+1:MOD(I,10)+1)
MONTH (I) = MNAMS (3*I-2 : 3*I]

DATE (pD, DM} = DD // '-' // DM

then the statement functions DAY, MONTH and DATE must be of known
fixed length, as must the dummy arguments of DATE, i.e., DD and
DM.

Scanned by Jonny Oddene for Sintran Data © 2011

66 ND-60.145.8 EN
SPECIFICATION STATEMENTS

3.5 THE IMPLICIT STATEMENT

An IMPLICIT statement is used to change or confirm default implied
data types, based on the initial letter of the symbolic name of a
constant, variable, array, external function, or statement
function.

The statement has the form:

IMPLICIT type (al,al...ll,type(al,al....)]
where
type is one of INTEGER, REAL, DOUBLE PRECISION,
NUMERIC (fw,sc), COMPLEX, LOGICAL or
CHARACTER [* length].

a is a single letter or range of single letters in alphabetical
order. A range is denoted by the first and last letter of the
range separated by a minus.

length is the length of a character item and must be either an

unsigned, non-zero, integer constant, or a positive integer
constant expression in parentheses. Its default value is one.

Example:

IMPLICIT COMPLEX (C)

ensures that all untyped names beginning with a C will be of type
COMPLEX.

ND-60.145.8 EN 67
SPECIFICATION STATEMENTS

An IMPLICIT statement specifies a type for all:

e variables

e arrays

e symbolic names of constants
e external functions

e statement functions

based on the first letter of the name. The normal defaults for
types can be expressed as:

IMPLICIT REAL (A-H, 0-Z), INTEGER (I-N)

Example:
VARIABLE NAME IMPLICIT VARIABLE TYPE
x123 REAL
horse REAL
insect INTEGER
c REAL
J INTEGER

An IMPLICIT statement does not change the type of any intrinsic
function, and its scope is that of the program unit containing it.

Type specification by an IMPLICIT statement may be overridden in
all cases by a type statement. An explicit type specification in a
FUNCTION statement overrides an IMPLICIT statement for the name of
that function subprogram. Note that the length is also overridden
when a particular name appears in a CHARACTER or CHARACTER
FUNCTION statement.

IMPLICIT statements must precede all other specification

statements in a program unit except a PARAMETER statement. More
than one IMPLICIT statement may be used in a program unit.

Scanned by Jonny Oddene for Sintran Data © 2011

68 ND-60.145.8 EN
SPECIFICATION STATEMENTS

3.6 THE PARAMETER STATEMENT

A PARAMETER statement is used to give a constant a symbolic name.

The form of a PARAMETER statement is:

PARAMETER (p = e [, p = el....)
where
p is a symbolic name of a constant.
e is a constant expression.

The assignment to p is made according to the rules for the
assignment statements, see Chapter 7.

When p is of type integer, real, double precision, or complex,
then the corresponding expression must be an arithmetic constant
expression. If p is of type character or logical, the
corresponding expression must be a constant expression of type
character or logical respectively.

p must not be defined more than once in a program unit.
Furthermore, if it is not of default implied type, then its type
must be specified by a Type statement or IMPLICIT statement prior
to its first appearance in a PARAMETER statement.

If p is of type character and of length other than the default
length of one, its length must be also defined prior to its first
appearance in a PARAMETER statement.

For example, the following code:

PARAMETER (PI = 3.141593)

COMPLEX J

PARAMETER (J = (0.,1.)], ROOT2 = 1.4142)

PARAMETER (RADIAN = 180/PI)

defines three REAL symbolic constants and one COMPLEX one.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 69
SPECIFICATION STATEMENTS

In the sequence:

PARAMETER [MAX = 100)
IMPLICIT REAL (M)
DIMENSION MATRIX (MAX, MAX)
PARAMETER (MAGFLD = 0.82)

the IMPLICIT statement does not apply to the PARAMETER statement

that precedes it. Thus MATRIX and MAGFLD are both of type REAL but
MAX is of default type (i.e., INTEGER).

Scanned by Jonny Oddene for Sintran Data © 2011

70 ND-60.145.8 EN
SPECIFICATION STATEMENTS

3.7 THE EXTERNAL STATEMENT
An EXTERNAL statement is used to identify an external or dummy

procedure and to permit its symbolic name to be used as an actual
argument.

The form of an EXTERNAL statement is:

EXTERNAL proc [,proc]...

where

each proc is the name of an external procedure,
dummy procedure, or block data subprogram.

When a name appears in an EXTERNAL statement it is declared to be
an external procedure, dummy procedure, or block data subprogram
name. If an external procedure name or dummy procedure name is
used as an actual argument, it must appear in an EXTERNAL
statement in the same program unit. A statement function name
cannot appear in an EXTERNAL statement.

The name of an intrinsic function appearing in an EXTERNAL
statement becomes the name of some external procedure,
whereupon an intrinsic function of the same name cannot be
referenced in the program unit.

Only one occurrence of a symbolic name is allowed in all of the
EXTERNAL statements of a program unit.

ND-60.145.8 EN ' 71
SPECIFICATION STATEMENTS

3.8 THE INTRINSIC STATEMENT
An INTRINSIC statement is used to identify the name of an

INTRINSIC function and to permit the use of this name as an actual
argument .

The form of this statement is:

INTRINSIC fname [,fname]...

where

each fname is an INTRINSIC function name.

If a specific name of an INTRINSIC function is used as an actual
argument, it must appear in an INTRINSIC statement in the same
program unit. For the INTRINSIC function names which must not be
used as actual arguments, see Section 11.2 on page 244.

If a generic function name appears in an INTRINSIC statement, it
does not loose its generic property.

A symbolic name may only appear once in all of the INTRINSIC

statements of a program unit and it must not occur in this unit
in both an EXTERNAL and an INTRINSIC statement.

Scanned by Jonny Oddene for Sintran Data © 2011

72 ND-60.145.8 EN
SPECIFICATION STATEMENTS

3.9 THE SAVE STATEMENT

A SAVE statement retains the defined values of items after
execution of a RETURN or END statement in a subprogram.

It has the form:

SAVE[a [,a]”,]

where

each a is a named common block name preceded and
followed by a slash, or a variable name, or an array name.
(Dummy argument names, procedure names, and names of items
in a common block must not appear.)

A SAVE statement without a list is treated as though it contained
the names of all allowable items within the program unit. The
appearance of a common block name preceded and followed by a slash
has the effect of specifying all of the items in that block.

When a common block name occurs in a SAVE statement in a
subprogram then it must occur in a SAVE statement in every
subprogram in which the common block appears.

If a named common block appears in a SAVE statement of a
subprogram, then the current value of items in the common block
storage sequence when a RETURN or END statement is executed, are
made available to the next program unit specifying that common
block.

If a named common block is specified in the main program unit,
then the current values of the common block storage sequence
become available to each subprogram specifying that common block;
a SAVE statement in this program has no effect.

If a local item appearing in a SAVE statement but not in a common
block is in a defined state when a RETURN or END statement is
executed, then this item is defined with the same value at the
next reference to the same subprogram.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 73
SPECIFICATION STATEMENTS

Scanned by Jonny Oddene for Sintran Data © 2011

74 ND-60.145.8 EN
SPECIFICATION STATEMENTS

P v“nth the exdeptwn

ctual arguments must

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

CHAPTER 4

THE DATA STATEMENT

75

ND-60.145.8 EN 77
THE DATA STATEMENT

A DATA statement is used to provide initial values for variables,
arrays, array elements and substrings.

The form of a DATA statement is:

DATA namelist/valuelist/ [[.,] namelist/valuelist /]..

where

namelist 1s a list of names of variables, arrays, array
elements, and substrings, together with implied DO
lists.

valuelist consists of a list of constants and/or
symbolic names of constants, each of which may be
prefixed by a repetition factor.

4.1 DATA STATEMENT RESTRICTIONS

Each namelist and valuelist must contain the same number of items.
There is a one-to—one correspondence between the items in the two
lists.

If an array name without a subscript appears in the list, then
there must be one constant for each element of that array.

Initialization must not occur more than once for variables, array
elements, or substrings.

Scanned by Jonny Oddene for Sintran Data © 2011

78 ND-60.145.8 EN
THE DATA STATEMENT

Each constant value from the valuelist is used to initialize the
corresponding element from the namelist according to the rules of
a normal FORTRAN assignment statement, see Chapter 7 which starts
on page 123.

| _'In ND FORTRAN AT

Examples of simple DATA statements:
® DATA 1/10/
This assigns a value of 10 to the integer variable I before
execution of the program.
® DATA PI/3.1415927/E/2.7182818/
is the same as
DATA PI,E/3.1415927, 2.7182818/
e To initialize a 6-element array to the values 1, 2, 3, 4, 5, and
6, we may write:
REAL X(6)
DATA X/1, 2, 3, 4, 5, 6 /
e To zero an array, the following could be used:

REAL STATS (10, 10)
DATA STATS /100*0./

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 79
THE DATA STATEMENT

e For multidimensional array names, the implied order of elements
is with the first subscript varying most rapidly. Thus:

DIMENSION A (3, 3)
DATA A/11, 21, 31, 12, 22, 32, 13, 23, 33/

will produce an array with the values:

A(1,1)=11, A(2,1)=21, A(3,1)=31, A(1,2)=12,...

Note that replication factors can cut across name~list items.
Thus:

DIMENSION A(8), B(8)
DATA A, B/1, 14*0, -1/

will set A(l) to 1, B(8) to -1, and all other elements of A and
B to O.

Scanned by Jonny Oddene for Sintran Data © 2011

80 ND-60.145.8 EN
THE DATA STATEMENT

4.2 IMPLIED DO IN A DATA STATEMENT

An implied DO list may appear in a DATA statement namelist, see
Section 8.7 on page 144. It is written as:

(dlist, I = m o, om, [, mJ]]

where
dlist is a list of array element names, and it
may contain other implied DO lists.
I is the name of an integer variable, here called

the implied DO-variable.

mo,om ., m and the subscripts in the dlist are each an integer
constant expression or an integer expression containing only

constants and the implied DO-variable.

An iteration count and the values of the implied DO-variable are
established from mo,om,, and m, exactly as for a DO-loop, see

Section 8.7 on page'144, except that the iteration count must be

positive.

Example:

To initialize the even elements of a one-dimensional array to +1,

and the odd elements to -1, you may write:

INTEGER SGN([20)
DATA (SGN(I},I=2,20,2]/10*+1/

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 81
THE DATA STATEMENT

(SGN (I),1I=1,20,2)/10%-1/

or to create a character string of alternating A's and B's:

CHARACTER (C*40

DATA (C(2*K-1:2*K),K=1,20)/20%"' AB' /

To initialize only the diagonal elements of a square array:

DIMENSION Q (10, 10])
DATA (Q(N,N},N =1,10}/10*1.1/

The default ordering of a two-dimensional array is by columns. To

set data in by rows, you can write:

DIMENSION A(3,3)
DATA ((A (I,J),0=1,3)1=1,3}/11,12,13,21,22,23,31,32,33/

which will set up A as in the last example in the previous

section. Note the ordering of the loops. The innermost one varies

most often.

Scanned by Jonny Oddene for Sintran Data © 2011

82

ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

CHAPTER 5

EXPRESSIONS

Scanned hy Innny Qddene faor Sintran Data © 2011

83

ND-60.145.8 EN 85
EXPRESSIONS

An expression is formed from operands, operators and parentheses.
This chapter describes the formation, interpretation, and evalua-

tion rules for the various types of expressions. These may be:

Arithmetic

Character

Relational

Logical

5.1 ARITHMETIC EXPRESSIONS

The simplest forms of arithmetic expressions are unsigned arith-
metic constants, symbolic names of arithmetic constants, and
arithmetic types of variables, array elements, and function
references.

Examples:

99 (arithmetic constant)
v (integer variable])
TABLE (2,3,4) (array element])

LOG [X+Y]) (function reference)

More complicated arithmetic expressions can be formed by using one
or more arithmetic operands together with arithmetic operators and
parentheses.

Scanned by Jonny Oddene for Sintran Data © 2011

86 ND-60.145.8 EN
EXPRESSIONS

The arithmetic operators are:

OPERATOR MEANING
it Exponentiation

/ Division

* Multiplication

- Subtraction [(or negation)

+ Addition

All the above operators are binary, i.e. used with two operands.
The - and the + are also available as unary operators, i.e. they
can be used with only one operand.

There is a precedence among the arithmetic operators which
determines the order in which the operands are to be combined
{unless the order is changed by the use of parentheses) as
follows:

OPERATOR PRECEDENCE

* oA highest

* and / intermediate

+ and - lowest {unary and binary])

Within each precedence level, the order is assumed to be from left
to right, except with exponentiation which is evaluated from right
to left.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 87
EXPRESSIONS

The arithmetic operands are:

e unsigned arithmetic constants

e symbolic names of arithmetic constants

e arithmetic variables

e arithmetic array elements

e function references

e arithmetic expressions enclosed in parentheses

e any of the above operands combined by means of arithmetic
operators to form arithmetic expressions.

Examples:

If X, Y, Z, A, and B are variables:

X+Y Forms the sum of X and Y.

X-Y Subtracts Y from X.

X+Y+Z Adds together X, Y, and Z.

X+Y-2 Adds X and Y, and then subtracts Z from the

result (see the general notes below).

X*Y/z Multiplies X and Y before dividing the result
by Z [see the general notes below].

X/Z*Y First divides Z into X, and then multiplies
the result by Y.

X*Y+Z Multiplies X and Y, and then adds Z to the
result.
Z+X*Y Multiplies X and Y, and then adds the result to

Z; the order here is determined by operator
* is performed first, followed by
the +, as in example 7.

precedences.

X*rry**z Raises Y to the power of Z first, and then X
is raised to the power of this result.

Scanned by Jonny Oddene for Sintran Data © 2011

88 ND~-60.145.8 EN
EXPRESSIONS

-A**2 Since the operator ** has precedence in this
example, its operands will be combined first.
Thus, the expression will be interpreted as:

- (A 2)
Expressions containing two consecutive arithmetic operators, such

as A**-B or A+-B, are not allowed. However, expressions such as
A**(-B) are permitted.

second Qflfhem 1
h-t-(-B) :

If the order dictated by the precedence rules is not the order
required, then parts of an expression may be written within
parentheses. Parts thus enclosed are then evaluated as a whole
expression before being used as an operand.

Example:

X+Y/Z Y is divided by Z, and then the result is added
to X (precedence rules].

(X+Y)/2 Ensures that X is added to Y before the
result is divided by Z.

[(X+Y)/(X+Z) Here X+Y and X+Z will be computed separately and
then the result of X+Y will be divided by the
result of X+Z. Note that in this case there is
no stipulation as to whether X+Y or X+Z is
evaluated first.

While the symbols +, -, ¥, /, and ** represent the usual mathema-

tical operations, the reader should be aware that the underlying
computing hardware has fixed limits as to the precision and
accuracy of the respresentation of values and of the results of
operations. These are described for each machine in Appendix E.

anred-bvdonnv-Oddene-for- Sintran-Data © 2011

ND-60.145.8 EN 89
EXPRESSIONS

Note that the order of operations on the computing hardware is
such that the result would be mathematically exact if the hardware
were mathematically precise. If a particular order of operations
is vital for numerical accuracy, it is best to use parentheses to
force the order.

Example:

X+Y+Z Represents the sum of X, Y, and Z. The
computation may add X to Y and then add Z, or
it may add Y to Z and then add X.

(X+Y)+2Z Ensures that X and Y are added together first,

before adding Z to this result.

5.1.1 Interpretation of Results for Arithmetic
Expressions

When the operator + or — operates on a single operand, the data
type of the result is the same as that of the operand.

When an arithmetic operator operates on a pair of operands, then,
except for exponentiation, the data type of the result is as
follows:

e If the types of the two operands are the same, then the data
type of the result will be the data type of these operands.

e If the types of the two operands are different, the operand of
lower data type (see below) is converted to the data type of
the other operand. Thus, the data type of the result will be
that of the operand with the higher data type.

Scanned by Jonny Oddene for Sintran Data © 2011

20 ' ND-60.145.8 EN
EXPRESSIONS

The hierarchical order of the data types is:

DATA TYPE ORDER
integer lowest
real

double precision
numeric

complex highest

Note that the conversion takes place before the operation is
performed, and that the operators are defined only for operands of
equivalent type. The conversions are defined by the INTRINSIC
functions REAL, DBLE, and CMPLX. See Section 11.2.2 on page 244.

Example:

If I, R, D, and C are variables of type INTEGER, REAL, DOUBLE
PRECISION, and COMPLEX respectively, then:

® The result of the expression I+I is of type INTEGER.

@ I*R will cause I to be converted to type REAL before the
multiplication, and the result is of type REAL.

e (D/I)+R will first cause conversion of I to DOUBLE PRECISION;
then the division will occur, then R will be converted to
DOUBLE PRECISION, and finally the addition will take place
giving a result of type DOUBLE PRECISION.

e D/I+R will have exactly the same effect as the previous
example, since the precedence rule for operators implies that

division occurs before addition.

® R*C will produce a result of type COMPLEX.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN ' 91
EXPRESSIONS

For the exponentiation operator, if the exponent (i.e. the right-
hand operand) is of type integer, then the data type of the result
is the same as that of the left-hand operand. Otherwise conversion
takes place as given above for the case of two arithmetic
operands.

Example:

If I and R are variables of data types INTEGER and REAL respec-
tively, then:

e J**T Has a result of type INTEGER.

e R**]J Is an expression of type REAL, (but note that I
is not converted here].

e J**R Is of type REAL, and I is converted to REAL.
® R**R Is of type REAL.
— NOTE:

If the exponent is of type INTEGER, then exponentiation can
be defined as repeated multiplications, so that every value
of the base (i.e. left-hand operand) is admissible. {except
zero if the exponent is negative.) But if the exponent is
not of type INTEGER, A**B is defined as EXP{B*LOG(A)),
where EXP and LOG are the INTRINSIC functions described in
Section 11.2.2 on page 244. In particular, note that LOG is
not defined for negative values of its argument. It is
important to realize that the difference in definition is
dependent on the type of the exponent and not on its value.
Thus the expression (-3.0)**(2.0) constitutes an error,
whereas {-3.0)**2 does not.

Scanned by Jonny Oddene for Sintran Data © 2011

92 ND-60.145.8 EN

EXPRESSIONS

5.1.2 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in
which each operand is an arithmetic constant, a symbolic name of

an arithmetic constant, or an arithmetic constant expression

enclosed in parentheses. Any arithmetic operator is allowed; the

operator ** is valid only if the exponent is of type INTEGER.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 93
EXPRESSIONS

5.2 CHARACTER EXPRESSIONS

The simplest form of a character expression is a character
constant or the symbolic name of a character constant, or a
character-type variable, array element, substring, or function
reference. More complicated character expressions are formed by

using one or more character operands together with the character
operator and parentheses.

Evaluation of a character expression produces a character-type
resulit.
The character operator is: // which represents concatenation.

The result of 'AB' // 'CD' is 'ABRCD'.

If a character variable is of unknown length, then there are
certain restrictions on its use in character expressions, in that
it can be used only in character assignment statements, and even
then, only when it directly forms part of the final result.

Example:

If we have the following declarations:

SUBROUTINE SR(C)
CHARACTER C*(*), A*100, B*10

then C is of unknown length, i.e. its length is taken from the
actual parameter.

You are allowed to write:

A= C//B

because the final result length is constrained by the length of A.

Scanned by Jonny Oddene for Sintran Data © 2011

94 ND-60.145.8 EN
EXPRESSIONS

But you cannot write:

CALL X(C//B)

because the actual argument is an expression whose length is not
constrained.

Similarly, the following expressions are allowed:

A=2C (I:J) // C (1:N)
B=A (1:3) // C (4:7)
A= (C (1:N}) // B} // (B (2:N] // C]

but none of these expressions can be used as actual arguments, or
as part of a relational expression (even though they may then form
part of an assignment statement).

Note that a symbolic constant always has a known length since a
declaration with length (*) means: use the length of the constant
expression assigned to it by a PARAMETER statement.

Example:

CHARACTER ALPHA* (*)
PARAMETER (ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')

implies no restrictions on the use of ALPHA due to its length (*).

Character operands are:

e character constants

e symbolic names of character constants

e character variables

e character array elements

e character substrings

e character function references

e character expressions enclosed in parentheses

e any combination of the above operands using the character
operator.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 95
EXPRESSIONS

A character expression is a sequence of one or more operands
separated by the character operator, (concatenation operator, //).
The evaluation is from left to right. Thus the expression:

"AB' // 'CD' // 'EF’
is the same as:

("AB' // 'CD') // 'EF'

5.2.1 CHARACTER Constant Expressions

A character constant expression is a character expression in
which each operand is a character constant, the symbolic name of a
character constant or a character constant expression enclosed in
parentheses. The only operand allowed is the concatenation
operator, //.

In ND FORTRAN, the IKTRIHSIC functicn. caAR may be'-med,
provided that the p&ramet is 3 con ' -

———————— Seanned-byJonny-OddeneforSintran-Data-© 2011

96 ND-60.145.8 EN
EXPRESSIONS

5.3 RELATIONAL EXPRESSIONS

A relational expression is used to compare the values of two
arithmetic expressions or two character expressions.

Relational expressions may form part of logical expressions and,
on evaluation, they produce a result of type logical, i.e. a value
.TRUE. or .FALSE. .

The relational operators are:

OPERATOR MEANING

.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

5.3.1 Arithmetic Relational Expressions

The form of an arithmetic relational expression is:

e rel e
2

where

rel is a relational operator.

eiand e2 are each an integer, real, double precision, numeric or
complex expression.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 97
EXPRESSIONS

A complex operand is permitted only when the relational operator
is .EQ. or .NE.

Before the comparison is carried out, the operands are converted,
if necessary, to make them of the same type. The rules are the
same as those for the common arithmetic operators (see Section 5.1
on page 86).

Example:

If I, R, D, and C are variables of type INTEGER, REAL, DOUBLE
PRECISION, and COMPLEX respectively, then:

¢ J.LE.O will give a value .TRUE. if I has the value zero
or a value less than zero.

e R.GT. O - 10 will yield .TRUE. if the value of R is
greater than -10.

¢ D.LT.R will convert R to DOUBLE PRECISION and the comparison
will yield .TRUE. if the value of D is less than R.

¢ 1.0.LE.I will convert I to RFEAL since the constant 1.0 is REAL
{note the extra dot])].

For the relationship between arithmetic and relational operators,
see Section 5.5 on page 103.

Scanned by Jonny Oddene for Sintran Data © 2011

28 ND-60.145.7 EN
EXPRESSIONS

5.3.2 CHARACTER Relational Expressions

Character relational expressions have the form:

e rel e
2

where

rel is a relational operator.
e e, are character expressions.
r— NOTE:

e 1is considered to be less than e, if its value precedes
that of e, in the collating sequence {see Appendix A).

If the lengths e and e, are unequal, then for comparison
purposes the shorter string is extended to the right and

filled with blanks.

5.3.3 LOGICAL Relational Fxpressions

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 99
EXPRESSIONS

5.4 LOGICAL EXPRESSIONS

Evaluation of a logical expression produces a logical result, i.e.
with a value of .TRUE. or .FALSE.

In its sirkplest form, a logical expression is a logical constant
{(or the symbolic name of one), or a logical variable, array
element, function reference, or it can also be a relational
expression.

More complicated expressions can be formed using one or more
logical operands combined with logical operators and parentheses.

The logical operators are:

OPERATOR MEANING

.NOT. logical negation

.AND. logical conjunction

.OR. ‘ inclusive or

.EQV., logical equivalence

.NEQV. logical non-equivalence (exclusive or)

The operator .NOT. is unary, i.e. used with one operand. The other
operators are binary, i.e. used with two operands.

Scanned by Jonny Oddene for Sintran Data © 2011

100 ND-60.145.8 EN
EXPRESSIONS

The logical operators have a precedence order, i.e. the order in
which operands are to be evaluated, unless this is changed by the
use of parentheses.

OPERATOR PRECEDENCE
.NOT. highest
.AND.

.OR.

.EQV. or .NEQV. lowest

For example, in:
A .OR. B .AND. C
the .AND. operator has higher precedence than the .OR. operator.
Therefore the interpretation of the above expression is the same
as the following:

A .OR. (B .AND. C)

The values of expressions involving the above operators is shown
below, where X1 and X2 are logical operands:

X .NOT. X
1 1
. TRUE. . FALSE.
.FALSE. . TRUE.
X X X .AND. X X .OR. X
1 2 1 2 1 2
. TRUE. . TRUE. . TRUE. - TRUE.
. TRUE. . FALSE. . FALSE. - TRUE.
.FALSE. . TRUE. .FALSE. . TRUE.
.FALSE. . FALSE. .FALSE. . FALSE.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 101
EXPRESSIONS

X1 X2 X1 .EQV. X2 X1 .NEQV. X2
. TRUE. . TRUE. . TRUE. . FALSE.
. TRUE. .FALSE. .FALSE. . TRUE.
.FALSE. |.TRUE. . FALSE. . TRUE.
.FALSE. |.FALSE. . TRUE. .FALSE.

The logical operands are:

e logical constants

e symbolic names of logical constants

® logical variables

e logical array elements

e logical function references

e relational expressions

e logical expressions enclosed in parentheses

e any of the above operands combined by means of logical

operators to form logical expressions.

For examples of how these combine with relational and arithmetic
operators, see Section 5.5 on page 103.

The data type of the result of an operator which returns a logical
result is LOGICAL.

Scanned by Jonny Oddene for Sintran Data © 2011

102 ND-60.145.8 EN
EXPRESSIONS

If the operands are arithmetic, the normal conversions and
precedence rules apply (see Section 5.1, on page 86).

Thus, if A and B are integer variables with values:

10108

It

11008

then:

A .AND. B is 1000B
A .OR. B is 1110B
A .NEQV. B is 01108

If A and B are INTEGER*2, then:
.NOT. A is 1767678
A .EQV. B is 1776678

It is important to note that although these operators produce
integer results when operating on integers, they still have the
same precedence as the logical operators.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 103
EXPRESSIONS

5.4.1 LOGICAL Constant Expressions

A logical constant expression is a logical expression in which
each operand is a logical constant, the symbolic name of a logical
constant, a relational expression in which each operand is a
constant expression, or a logical constant expression enclosed in
parentheses. Any logical operator or relational operator is

allowed.

5.5 EVALUATION OF EXPRESSIONS

This section applies to arithmetic, character, relational, and
logical expressions. The order of evaluation of expressions is
determined by:

e The use of parentheses

e The established precedence among the various operators

e The location of operators within an expression

5.5.1 The Use of Parentheses

Expressions within parentheses are evaluated first. Where paren-
thetical expressions are nested (one contained within another),
the innermost expression is evaluated first, followed by the next
innermost, and so on, until the outermost parenthetical expression
has also been evaluated. If more than one operator is contained in
an expression within parentheses, the computation proceeds
according to the precedence rules for the operators.

Scanned by Jonny Oddene for Sintran Data © 2011

104 ND-60.145.8 EN
EXPRESSIONS

5.5.2 Precedence of Operators

The hierarchy of precedence among the arithmetic operators (see
Section 5.1 on page 86), and logical operators (see Section 5.4 on
page 99), has already been discussed. There is only one character
operator and no precedence has been established among the
relational operators.

Precedence among the various types is as follows:

OPERATOR PRECEDENCE
Arithmetic Highest
Character

Relational

Logical Lowest

An expression may contain more than one kind of operator.

For example, the logical expression:

L .OR. A+B .GE. C

where A, B, and C are of type real and L is of type logical,
contains an arithmetic operator, a relational operator, and a
logical operator. This expression would be interpreted in the same

way as:

L .OR. ((A+B) .GE. C]

5.5.3 Location of Operators within an Expression

When a series of exponentiation operators occurs within an
expression, the order of evaluation is from right to left.

All other operations are computed from left to right when there is
more than one occurrence within an expression of operators at the

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 105
EXPRESSIONS

same hierarchical level.

Example:
Using the variable names and types below:

I, K integer
R, S real

L, M logical

G, H character

»

these more complex expressions will be interpreted as follows:

I + K Simple arithmetic of type INTEGER.

L .OR. M Simple LOGICAL.

R .LT. S Relational giving result of type LOGICAL.

G // H Simple character expression of type
CHARACTER.

(I + 1) .EQ. K Compares K with (I+1) giving a result of

type LOGICAL.

I + 1 .EQ. K K is compared with [(I+1) since arithmetic
operators are evaluated before relational
operators.

R* 2 .GT. § + 10. Compares (R*2)] with (S+10.) yielding a
result of type LOGICAL.

I .EQ. 3 .OR. R .LT. S Performs a comparison between I and 3, and
a comparison between R and S. These two
logical results are then combined with the
.OR. operator to give a logical result.

Note that the order in each example above is described for
explanatory purposes only so that an expression can be correctly
interpreted. However, the actual order of interpretation is not
fixed, so long as the result is mathematically and logically
equivalent. In reality, it could be the case that part of an
expression is not evaluated at all.

Scanned by Jonny Oddene for Sintran Data © 2011

106 ND-60.145.8 EN
EXPRESSIONS

Consider the following:

IF (I .EQ. 1 .OR. K .EQ. 4] GO TO 10

If I has the value 1, then the expression in brackets is known to
be true after testing I for 1. The testing of K for 4 can be
skipped in this case and control can pass to 10 immediately.

Note further, that any function called during the evaluation of an
expression should not modify any values used elsewhere in the
expression since the order of evaluation of the operands of an
expression is not defined. The results of such misuse may differ
from machine to machine, or even depend on the optimization level
employed. The only exception is that a function will not be called
until its actual arguments have been evaluated. This can be relied

upon.

5.6 CONSTANT EXPRESSIONS
A constant expression is one of the following:
e an arithmetic constant expression (see Section 5.1.2 on page 92)

e a character constant expression (see Section 5.2.1 on page 95)
® a logical constant expression (see Section 5.4.1 on page 103)

— Secanned-by-Jonny- Oddene for Sintran Data ©@2044

ND-60.145.8 EN 107

CHAPTER 6

ARRAY EXPRESSIONS

ND-60.145.8 EN 109
ARRAY EXPRESSIONS

An array expres
parentheses.
interpre cation, and
array e€. :pressicms These :

‘e Arithmetic
s Relational

All arrays t
results in an

where 4, B and C ar

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

110
ARRAY EXPRESSIONS

The arithmetic array operators are:

GPE&?AT@R
e ; -:Divigidb
] * s _Multiplxaation

1. : - S ;Subtz—aatzoﬂ (or negat.zon}

i . ' . Addition

o the opetands are to be
nged by the use of

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 111
ARRAY EXPRESSIONS

If A and B are arrays of the 5_ :

A+ X 'wili add’x to:eacﬁ eie

A+ x*2 will add ¥*2 ta eac'

A% B will add A to B, one eleme

that oi’ the result '

Scanned by Jonny Oddene for Sintran Data © 2011

112

ND-60.145.8 EN
ARRAY EXPRESSIONS

real

dauble precls;an

ND-60.145.8 EN 113
ARRAY EXPRESSIONS

more nperands is an array. Af
evaluated on an element by elemen

The charactey array apera@or is:
/!

which represents concatenation.

The result of 'AB' // 'CD' is 'BBCD'.

: expre331ons, in that it can be sed only
assighment statemefits, and even the
forms part of the final result.

ample:

If we have the following declarations:

SUBROUTINE SR{r)
CHARACTER Cf10) (*), Al(10})*100, B{1 0] *30

then ¢ is of unknown length, i.e. its 1ength is taken from the :
actval varameter, .
You are allowed to write:
A = C//B

because the final result length is constralned by the length
of A.

Scanned by Jonny Oddene for Sintran Data © 2011

114 ND-60.145.8 EN
ARRAY EXPRESSIONS

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 115
ARRAY EXPRESSIONS

Before the co
converted, if neces

operators, see Section 5.1. on page 86.

Scanned by Jonny Oddene for Sintran Data © 2011

116 ND-60.145.8 EN
ARRAY EXPRESSIONS

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 117
ARRAY EXPRESSIONS

OPERATOR
7N‘O§?‘,‘.' |
. AND.
.OR.

Scanned by Jonny Oddene for Sintran Data © 2011

118 ND-60.145.8 EN
ARRAY EXPRESSIONS

_operators to

s mterpreted as

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 119
ARRAY EXPRESSIONS

A:ri thma-:b; c Hz ghes t
 Relational
Logical Lowest

Scanned by Jonny Oddene for Sintran Data © 2011

120 ND-60.145.8 EN
ARRAY EXPRESSIONS

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 121

CHAPTER 7

ASSIGNMENT STATEMENTS

ND-60.145.8 EN 123
ASSIGNMENT STATEMENTS

Execution of an assignment statement causes a specific value to be
given to one or more variables and/or array elements.

There are four kinds of assignment statements:

e Arithmetic
e Logical
e Statement Label (ASSIGN)

e Character

7.1 ARITHMETIC ASSIGNMENT STATEMENT

The form of an arithmetic assignment statement is:

v = e
where
v is the name of a variable array or array element
of type INTEGER, REAL, DOUBLE PRECISION, COMPLEX
or NUMERIC.
e is an arithmetic expression.

If v is an array, then e may also be an arithmetic array
expression.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

124
ASSIGNMENT STATEMENTS

Examples:

A, B and C are arrays of the same size:

A=0A=B+7C

Upon execution of an arithmetic assignment statement, the
expression e is evaluated according to the rules in Section 5.5 on
page 103, it is then converted to the type of v, with the
resultant value being assigned to v according to the rules given

in the table below:

TYPE OF V VALUE ASSIGNED
Integer : INT (e]

Real REAL [e]
Double Precision DBLE (e)
Complex CcCMPLX [e])

where the functions in the VALUE ASSIGNED column are INTRINSIC
functions described in the table in Section 11.2 on page 244.

ND-60.145.8 EN 125
ASSIGNMENT STATEMENTS

7.2 LOGICAL ASSIGNMENT STATEMENT

The form of a logical assignment statement is:

v = e
where
v is the name of a logical variable, logical array
or logical array element.
e is a logical expression

If v is an array then e may also be a logical array expression.
Upon execution of a logical assignment statement, the expression e

is evaluated and its resultant value is assigned to v. e must have
a value of either true or false.

oRRY. Oddene for Sintran Data © 20141

126 ND-60.145.8 EN
ASSIGNMENT STATEMENTS

7.3 STATEMENT LABEL ASSIGNMENT (ASSIGN] STATEMENT

The form of a statement label assignment statement is:

ASSIGN s TO i

where
s is a statement label.
i is an integer variable name.

Execution of an ASSIGN statement causes s to be assigned to i. s
must be the label of a statement appearing in the same program
unit as the ASSIGN statement, and it must also be the label of an
executable statement or a FORMAT statement.

Execution of a statement label assignment statement is the only
way that a variable may be given a statement label value.

A variable must be defined with a statement label value when
referenced in an assigned GO TO statement or as a format
identifier in an I/O statement. While possessing a statement label
value, the variable must not be referenced in any other way. An
integer variable may be subsequently redefined with the same or a
different statement label value or with an integer value.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 127
ASSIGNMENT STATEMENTS

7.4 CHARACTER ASSIGNMENT STATEMENT

The form of a character assignment statement is:

v = e
where
v is the name of a CHARACTER variable, CHARACTER
array, CHARACTER array element, or a CHARACTER
substring.
e is a CHARACTER expression.

If v is an array, then e may also be a CHARACTER array.

Execution of a character assignment statement causes the
expression e to be evaluated, and the result assigned to v. If any
of the character positions defined by v are referenced in e, the
results are undefined. v and e may have different lengths. If the
length of v is greater than the length of e, then the effect is to
extend to the right with the blank characters until it has the
same length as v. If v is shorter than e then e is truncated from
the right until its length equals that of v.

Example:
CHARACTER A*2, B*4 A = B

only the substring B(1:2) must be defined.

onnvOddene for Sintran Data © 2011

a]
ot DR A AR R

128 ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 129

CHAPTER 8

CONTROL STATEMENTS

ND-60.145.8 EN 131
CONTROL STATEMENTS

Control Statements enable the normal sequence of statement
execution to be altered. There are sixteen control statements.
e Unconditional GO TO

e Computed GO TO

e Assigned GO TO

e Arithmetic IF

e Logical IF

e Block IF
e ELSEIF

o ELSE

e ENDIF

e DO

e CONTINUE
e STOP

e PAUSE

e END

o CALL

e RETURN

The CALL and RETURN statements are described in Sections 11.5.1 on
page 265 and 11.7 on page 270 respectively.

Scanned by Jonny Oddene for Sintran Data © 2011

132 ND-60.145.8 EN
CONTROL STATEMENTS

8.1 UNCONDITIONAL GO TO STATEMENT

The unconditional GO TO statement transfers control of the program
to the statement specified. It has the form:

GO TO s

where

s is the statement label of an executable statement
appearing in the same program unit as the unconditional
GO TO statement.

On execution, control is transferred so that the statement
identified by the statement label is executed next.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 133
CONTROL STATEMENTS

8.2 COMPUTED GO TO STATEMENT

A computed GO TO statement has the form:

co 10 (s [,s] ...) [.1li

where

s is the statement label of an executable statement
appearing in the same program unit as the
computed GO TO statement. The same statement label
may appear more than once in the same computed GO
TO statement.

i is an integer expression.

NOTE : _ :'_ s
Although the ANSI FORTRAN 77 st
be of the above type, in ND FORTRAN
expression that can be converted to

Execution of a computed GO TO statement causes a transfer of
control to the statement having the ith statement label in the
list of statement labels. This will only occur if 1<i<{n where n is
the number of labels in the list. If i is outside this range, the
execution sequence is as if a CONTINUE statement were executed,
i.e. control passes to the statement immediately following the
computed GO TC.

FaYaTalV; Oddene faor Sintran Data © 2011

134 ND-60.145.8 EN
CONTROL STATEMENTS

Example:

INTEGER RECTYP
C Read next record on file. Sets rectyp to integer code
5 CALL INPUT
C Decide what to do by looking at type of record in rectyp
Go TO (10, 20, 30, 30, 50), RECTYP
C Error as record type has invalid value
CALL INVALR
GO TO 5
C Rectyp is 1 - good employees are paid
10 CALL PAY
GO TO 5
C Rectyp is 2 - he gets a rise
20 CALL UPPAY

GO TO 5
C Rectyp is 3 or 4 - change name or address etc.
30 CALL UPDAT
GO TO 5

C Rectyp is 5 - he is fired
50 CALL DELETE
GO TO 5

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 135
CONTROL STATEMENTS

8.3 ASSIGNED GO TO STATEMENT

The form of this statement is:

o to i [[,] (sl,s]...)]

where

s is the statement label of an executable statement
appearing in the same program unit as the assigned
GO TO statement. The same statement label may
occur more than once in the same assigned GO TO
statement.

i is an integer variable name.

At the time of execution of this statement, i must have the value
of a statement label appearing in the same program unit. Assigned
GO TO statements must be logically preceded by an ASSIGN
statement, within the same program unit, which will set the value
of i. Execution of the assigned GO TO statement then transfers
control so that the statement identified by i is executed next.

If the parenthesized list is present then the statement label
assigned to i must be one of those in the list.

Scanned by Jonny Oddene for Sintran Data © 2011

136 o ND-60.145.8 EN
CONTROL STATEMENTS

Example:

5 CALL INPUT
C Normal case
ASSIGN 10 TO KLAB
C See if it could be a small one
IF (AREA.LT.100..AND.WIDTH.LT.10.) ASSIGN 20 TO KLAB
C Perhaps it is large
IF (AREA.GT.10E4.0OR.WIDTH.GT.100.) ASSIGN 30 TO KLAB
C Decide how to process
5000 GO TO KLAB, (10, 20, 30)

C Normal
10 CALL NORM
GO TO 5

C Small case
20 CALL SMALL
GO TO 5
C Large case
30 CALL LARGE
GO TO 5

The statement labeled 5000 could also have been written as:

GO TO KLAB (10, 20, 30)
or,

GO TO KLAB

or,

GO TO KLAB (10, 20, 30, 5000, 5)

If the list is given, then all of 10, 20, and 30 must be included
since otherwise the compiler may generate incorrect code. It
relies on the list to determine the possible flow of control from
this point in the program. The best code will result when the list
is exactly correct, so that it does not include any labels that
cannot be reached.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
CONTROL STATEMENTS

137

8.4 ARITHMETIC IF STATEMENT

This statement has the form:

IF (e]) S,» Sy, 5,

where

is an integer, real, numeric or double precision
expression.

, S are each the statement label of an executable
statement in the same program unit as the arith-
metic IF statement. The same statement label may
appear more than once in the group of statement

labels.

Execution of the arithmetic IF statement causes evaluation of the

expression e, followed by a transfer of control. One of the

statements identified by s , s or s is executed next; which one

depends on whether the valle of e is’less than zero, equal to

zero, or greater than zero respectively.

Example:

C Check to see if it will fit
IF (SIZE - LIMIT) 30, 20, 10
C Size > limit, so it will not fit
10 CALL ERROR
C Exactly at 1imit - issue warning
20 CALL WARN
C Fits easily - process it
30 CALL PROCESS

Scanned by Jonny Oddene for Sintran Data © 2011

138

ND-60.145.8 EN
CONTROL STATEMENTS

8.5 LOGICAL IF STATEMENT

The form of this statement is:

IF (e) sta

where
e is
sta is
IF

IF

Execution of
If the value

If the value

a logical expression.
any executable statement except a DO, block

., ELSEIF, ELSE, ENDIF, END, or another logical
statement.

this statement causes evaluation of the expression e.
of e is true then statement sta is executed.

of e is false, the statement sta is not executed.

Program execution then proceeds as if a CONTINUE statement were
executed, i.e. control passes to the statement immediately
following the logical IF.

Example:

C If debugging, write intermediate values
IF (DBUG) WRITE (1,*) ALPHA, VAL, I
C If it is negative, cannot continue
IF (RESULT .LT.0) STOP 16

C Find first

element in the range -1 to +1

Do 10 I = 1, N

IF (A(I}.GE. -1 .AND.A(I).LE+1)] GO TO 20
10 CONTINUE
20 CALL PROC [A(I)})

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 139
CONTROL STATEMENTS

8.6 THE BLOCK IF, ELSEIF, ELSE, AND ENDIF STATEMENTS

These statements are used to control the execution sequence. The
block IF statement and its corresponding ENDIF statement forms a
single unit. The ELSEIF and ELSE statements may be optionally
combined with the block IF and ENDIF statements to provide
alternative paths for the sequence of execution.

The form of a block IF is:

IF (e) THEN

ENDIF

where

e is a logical expression.

Upon execution of a block IF statement, the expression e is
evaluated. If the value of e is true, the execution sequence
continues with the next executable statement following the block
IF statement. Statements between the next (if any) ELSEIF or ELSE
statement and the corresponding ENDIF will not then be executed.
If false, control is transferred to the next ELSEIF or ELSE
statements, if any, or to the ENDIF statement corresponding to the
block IF statement.

8.6.1 The ELSEIF Statement

The form of an ELSEIF statement is:

ELSEIF (e] THEN

where

e is a logical expression.

Scanned by Jonny Oddene for Sintran Data © 2011

140 ND-60.145.8 EN
CONTROL STATEMENTS

Execution of this statement causes e to be evaluated. If the value
of e is true, then the execution sequence continues with the next
executable statement following the ELSEIF statement. Again,
statements between the next ELSEIF or ELSE statements, if any, and
the ENDIF statement of this unit, will not then be executed. If
there are no executable statements between this statement and the
next ELSE IF, ELSE, or ENDIF statements, then control will be
transferred to the ENDIF statement. If the value of e is false,
control is transferred to the next ELSEIF, ELSE, or ENDIF
statement of this unit.

8.6.2 The ELSE Statement

The form of an ELSE statement is:

ELSE

The execution of an ELSE statement has no effect. The ELSE
statement shows where control passes to if all expressions in the
IF and ELSEIF statements in this unit are false, see note on
statement labels at the end of the next section.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 141
CONTROL STATEMENTS

8.6.3 The ENDIF Statement

This statement has the form:

ENDIF

Execution of an ENDIF statement has no effect. For each block IF
statement there must be a corresponding ENDIF statement in the

same program unit.

In ND FORTRAN, statement labels on ELSEIF and ELSE statements
can be referenced. A GO TO statement will transfer control to
a point immediately prior to the evaluation of e in ELSEIF
statements.

8.6.4 Examples of Block IF, ELSEIF, ELSE and ENDIF

Statements

® (Test for fit on a page
IF (CURLIN + N.GT.LINPAG) THEN
CALL NEWPAG
CURLIN = O
ENDIF

e (Adjust payment
IF [(TAXED) THEN
NET = GROSS-TAX (GROSS)
ELSE
NET = GROSS
ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

142 ND-60.145.8 EN
CONTROL STATEMENTS

® (Compute area of figure
IF (N .EQ. 3) THEN
S =(A+ B+ C)] /2.0
AREA = SQRT ((5-A)*(S5-B})*(5-CJ}*S])
ELSEIF (N .EQ. 4) THEN

AREA = A"B
ELSE

AREA = PI"A**2
ENDIF

® (C Check signatures
IF (AMOUNT .GE. 10000) THEN
IF (NSIG .NE. 2) THEN
CALL NOGOOD
ELSE
CALL BIGCHK
ENDIF
ELSEIF [AMOUNT .GE. 100) THEN
CALL MIDCHK
ENDIF
C If passed, pay it
IF (OK) THEN
CALL PAYIT
ELSE
CALL ABORT
WRITE(1,*) ERROR IN CHEQUE' ,AMOUNT,INVOIC,NSIG,CNUM

ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 143
CONTROL STATEMENTS

As can be seen from the last example, block IF constructs can be
nested. They may be nested to any depth, but each nested block IF
must be wholly contained between:

e The IF ... THEN statement and the next occuring ELSEIF ... THEN,
ELSE, or ENDIF statements of the next outermost block IF
construct.

or,

e The ELSEIF ... THEN statement and the next occurring
ELSEIF ... THEN, ELSE, or ENDIF statements of the next outermost
block IF construct.

or,

e The ELSE statement and the next occurring ENDIF statement of the
next outermost block IF construct.

Scanned by Jonny Oddene for Sintran Data © 2011

144 ND-60.145.8 EN

CONTROL STATEMENTS

8.

A

7 THE DO STATEMENT

DO statement specifies a loop, called the DO-loop, which can be

used for coding iterative procedures.

This statement has the form:

posl,] i-= e ez[,93]

where

S

e
1

r—-NOTE:

is the statement label of an executable statement.

This statement is called the terminal statement of the
DO-loop and it must appear in the same program unit as the
DO statement.

is the name of an integer, real, or double-precision
variable called the DO-variable.

,e_,e. are each an integer, real, or double-precision
expressions

The terminal statement of a DO-loop must not be a control
statement with the exception of logical IF, CONTINUE, PAUSE, or
the CALL statement. If it is a logical IF statement, then this
may contain any executable statement except DO, block IF,
ELSEIF, ELSE, ENDIF, END, or another logical IF statement.

The label on the terminal statement is inside the loop. If several
loops have the same terminal statement, then the label is in the
innermost of the loops. Thus, program control can only jump to
this label from within the innermost loop.

The range of a DO-loop is that of all executable statements
following the relevant DO statement, up to and including the
associated terminal statement.

A

'nested’ DO statement, i.e., one whose range is contained

entirely within the range of another DO statement, may have the
same terminal statement as the outer DO-loop.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 145
CONTROL STATEMENTS

If a block IF statement appears within the range of a DO-loop, its
corresponding ENDIF statement must also do so.

This can be illustrated as follows:

C Find maximum and minimum values
MX = O
MN = 0
Do 101 =1, N
IF (A(I) .GT. MX) THEN

MX = A (I]
ELSEIF (A(I] .LT. MN] THEN
MN = A (I)
ENDIF

10 CONTINUE

If a DO-loop appears within a block IF ... ENDIF unit, then the
range of the DO-loop must be contained within the unit.
Furthermore, it must be contained entirely between ELSEIF or ELSE
statements, if any, and the next ELSEIF, ELSE or ENDIF statement
in this block IF ... ENDIF unit.

For example:

C Get the sum of the elements of one of three different arrays
X=0.0
IF(M .LE. 0) THEN
C Sum elements of array "A"
Do 10 I = 1,NELS
X=X+A[NELS)
10 CONTINUE
ELSEIF(M .GE. 5) THEN
C Sum elements of array "B”
DO 20 I = 1,NELS
X=X+B(NELS)
20 CONTINUE
ELSE
C Sum elements of array "C"
Do 30 I = 1,NELS
X=X+C(NELS)
30 CONTINUE
ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

146 ND-60.145.8 EN

CONTROL STATEMENTS

8.7.1 Execution of a DO Statement

A DO statement is executed in the following stages:

1.

6.

— NOTE:

e s e, and e, are evaluated (including, if necessary,
conversion to” the type of the DO-variable). These values will
be known from now on as the initial parameter, terminal para-
meter, and incremental parameter respectively. If e does

not appear, then the incremental parameter is given the value
of one. (It must not be zero.)

. The DO-variable, i, takes the value of the initial

parameter.

The following test is performed to determine whether the loop
should be terminated:

If the incremental parameter >0, then the loop is terminated,
if i> terminal parameter.

If the incremental parameter <0, then the loop is terminated
if i< terminal parameter.

If the DO-loop is to be terminated, control passes to the next
executable statement following the terminal statement or, if
there is another DO-loop sharing its terminal statement with
this one, then control passes to the incrementing stage for the
next outer DO.

If the loop has not been terminated, the statements within the
loop are executed.

. At the end of the loop, the DO-variable is incremented by the

value of the incremental parameter. {Note that if the
incremental parameter <0, the DO-variable will, in fact,
decrease.)

The loop control processing begins again at stage 3.

It is perfectly possible for the body of the loop not to

be executed at all. This happens if the terminating conditions
are satisfied on the first entry to loop control processing at
stage 3.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 147
CONTROL STATEMENTS

Examples:

® (Initialize array to zero
DO 10 I = 1, N
10 A(I) = 0

® (Copy upper diagonal to lower
DO 20 1I=2, N
Do 10 J = I+1, N
A(J, I)=4(I, J)
10 CONTINUE
20 CONTINUE

® (Find maximum values by rows
DO 201 =1, N
XMx (I) = A (1, 1)
Do 20 J= 2, N
IF (A(I,J) .GT. XMX (I)) xMX (I) = A(I,J)
20 CONTINUE

® (The sieve of eratosthenes
LOGICAL P(2 : 1000)
C Initialize prime array
DO 10 I = 2,1000
10 P(I) = .TRUE.
C Run through all candidates
DO 30 I=2, SQRT (1000+1)
C If it is a prime, then mark off all multiples
IF (P(I)) THEN
DO 20 K = 2*I, 1000, I
20 P(K) = .FALSE.
ENDIF
30 CONTINUE

Scanned by Jonny Oddene for Sintran Data © 2011

148 ND-60.145.8 EN
CONTROL STATEMENTS

® (Set diagonal to sum of row to the left
Do 20 1 =1, N
S =0
DO 10 K = 1, I
S =5+ A (I, K)
10 CONTINUE
C K now contains the final value, I-1, plus one increment,
C i.e. the value of I
A (K, K] =S
20 CONTINUE

8.7.2 The DO FOR ... ENDDO Statements

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 149
CONTROL STATEMENTS

DOF’GRI: 1 N
S = 0 : i
DO FOR K = 1, 1

B = 8% A {1 X-j

A [K, K]

ENDDO o

e

or,

DO I = 1, N
S5 &0
DOK=1, 1
S=S+A{I K}
A{K K}=s
ENDDO

8.7.3 The DO WHILE ... ENDDO Statements

In ND FORTRAH th
iterative programm
ENDDO statemmts

WHI LE

Bope

where

is a lng_ cal exp

Scanned by Jonny Oddene for Sintran Data © 2011

150 ND-60.145.8 EN
CONTROL STATEMENTS

. Rea&_géé&t reco

wil_l not be exemuted_

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 151
CONTROL STATEMENTS

8.8 THE CONTINUE STATEMENT

The form of a CONTINUE statement is:

CONTINUE

This statement may appear anywhere within the program. Its
execution has no effect and the statement is commonly used to
provide a loop termination to avoid ending with a GO TO, STOP,
PAUSE, RETURN, Arithmetic IF, another DO statement, or a
Logical IF statement containing any of the these.

Scanned by Jonny Oddene for Sintran Data © 2011

152 ND-60.145.8 EN
CONTROL STATEMENTS

8.9 THE STOP STATEMENT

This statement has the form:

sToP [nl

where

n is an integer constant of up to five digits
(decimal) or a character constant.

In ND FORTRA

Execution of a STOP statement causes termination of the executable
program. At the time of termination the text, STOP » is printed
out on the message output file, i.e. the user's terminal for
background programs, and the system console for RT-programs.

When execution terminates, all files which have not been
permanently opened are closed.

Example:

STOP 16
STOP ' CANNOT OPEN FILE' // FILENM

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 153
CONTROL STATEMENTS

8.10 THE PAUSE STATEMENT

The form of the PAUSE statement is:

PAUSE [n]

where

n is an integer constant of up to five digits
(decimal) or a character constant.

Execution of a PAUSE statement suspends execution of the program
and the text PAUSE n is printed on the message output file.

PAUSE 224
PAUSE 'PLEASE MOUNT TAPE'

Scanned by Jonny Qddene for Sintran Datg © 2011

154 ND-60.145.8 EN
CONTROL STATEMENTS

8.11 THE END STATEMENT

The form of this statement is:

END

It is used to indicate that the end of the sequence of statements
and comment lines of a program unit has been reached. If executed
in a function or subroutine program, it has the effect of a RETURN
statement; in a main program, it terminates execution of the
executable program and hence causes all files to be closed.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 155

CHAPTER 9

INPUT/OUTPUT STATEMENTS

ND-60.145.8 EN 157
INPUT/OUTPUT STATEMENTS

9.1 I/0 TERMS AND CONCEPTS

Input statements control the transfer of data from external media
or from an internal file into internal storage. This process is
called reading. Output statements control the transfer of data
from internal storage to external media or to an internal file.
This process is called writing.

In addition to data transfer statements, other statements perform
file control, device control, or inquiry.

These are the input/output statements:

e READ

e WRITE

e PRINT

e OPEN

e CLOSE

e BACKSPACE
e ENDFILE

e REWIND

e INQUIRE

The READ, WRITE and PRINT statements are data transfer statements.
The OPEN and CLOSE statements are file control statements. The
BACKSPACE, ENDFILE and REWIND statements are device control
statements. The INQUIRE statement performs file inquiry.

9.1.1 Records
A record is a sequence of values or characters which is considered

as a single unit by the device it is being read from or written
to. It may correspond to a physical entity, such as a punched

Scanned by Jonny Oddene for Sintran Data © 2011

158 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

card, but not necessarily. For instance, input from a terminal is
separated into records by the return key.

There are three types of records:

e Formatted
e Unformatted

e Endfile

A FORMAT statement contains a set of format specifications
defining the layout of a record and the form of the data fields
within the record (see Chapter 10.1 on page 209, for a complete
description of the FORMAT statement). Format specifications may
also be stored in an array or variable of type CHARACTER rather
than in a FORMAT statement.

A formatted record is one which is transferred under the control
of a format specification as outlined above. Other records are
unformatted records. During unformatted transfers, data is
transferred on a one-to—-one basis between external media (or
internal files) and internal storage with no conversion or
formatting operations involved.

An endfile record is written by using the ENDFILE statement. An
endfile record may only occur as the last record of a file.

9.1.2 Files
A file is a sequence of records; it may be internal or external.

Internal files provide a means of transferring and converting data
within internal storage. An internal file has the following
properties:

e The file is a character variable, character array, character
array element, or a character substring.

e A record of an internal file is a character variable, array
element, or a substring.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 159
INPUT/OUTPUT STATEMENTS

e If the file is a character variable, character array element,
or character substring, it consists of a single record whose
length is the same as the length of the variable, array ele-
ment, or substring respectively.

e If the file is a character array, it is treated as a sequence
of character array elements. Each array element is a record of
the file. The ordering of the records of the file is the same
as the ordering of the array elements in the array, see Section
2.4.2. on page 39. Every record of the file has the
same length, which is the length of an array element in the

array.

e If the number of characters written in a record is less than
the length of the record, the remaining portion is filled with

blanks.

e An internal file is always positioned at the beginning of the
first record prior to data transfer.

An external file is a collection of records stored on an external
storage medium, e.g., a disk.

9.1.2.1 File Format

An unformatted File consists of unformat

Scanned by Jonny Oddene for Sintran Data © 2011

160 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

If a formatted file is not a print file, then each record is
followed by the pair of characters (CR,LF). All these control
characters must be included in the RECL count if it is specified.

9.1.2.2 File Access

For an external file there are two access methods, sequential and
direct.

The method of accessing the file is determined when the file is
connected to a unit. An internal file must be accessed
sequentially, as must also magnetic tapes and character devices,
i.e. terminals and internal devices.

SEQUENTIAL ACCESS

The order of the records on the file is the order in which they
were written. Each I/0O statement executed in sequential mode
transfers the record immediately following the previous record
transferred from the accessed source file.

The records of the file are either all formatted or all
unformatted (except that the last record of the file may be an
endfile record). A record that has not been written since the file
was created must not be read.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 161
INPUT/OUTPUT STATEMENTS

DIRECT ACCESS

All records of the file have the same length. They must be either
all formatted or all unformatted.

Each record of the file is uniquely identified by a positive
integer called the record number which is specified when the
record is written. Once established, this number cannot be
changed. Although a record may not be deleted it can, however, be
rewritten.

The order of the records on the file is the order of their record
number .

Records need not be read or written in the order of their record
number. Any record may be written into the file while it is
connected to a unit. For example, you may write record 3 even
though records 1 and 2 have not been written. Any record may be
read from the file provided that the record has been written.

further informatléb ‘Qn the‘ N) FGR
extensions.

Scanned by Jonny Oddene for Sintran Data © 2011

162 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

9.1.3 Units

A UNIT is a means of referring to a file. A unit specifier has the
form:

[UNIT=] u

where

u is an external unit identifier (to refer to
external files) or an internal file identifier.

If the optional characters UNIT are omitted from the unit speci-
fier then this specifier must be the first item in a list of
specifiers.

An external unit identifier can be:

e A positive or zero integer expression

e An asterisk, identifying a particular unit that is preconnected

for formatted sequential access, see Chapter 3 on the ND
FORTRAN User Guide, ND-60.265.

In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N =6
REWIND N

the value 6 used in both program units identifies the same
external unit.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 163
INPUT/OUTPUT STATEMENTS

An internal file identifier is the name of a character variable,
character array, character array element, or character substring.

Internal files provide a means of transferring and converting data
within internal storage.

9.1.4 Format Specifier and Identifier

A format specifier has the form:

[FMT = 1F

where

£ is a format identifier.

If the optional characters FMT are omitted then the format
specifier must be the second item in a list of specifiers. In this
case the first item must be a unit specifier without the optional

Scanned by Jonny Oddene for Sintran Data © 2011

164 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

characters UNIT=.

A format identifier identifies the format type, see Chapter 10 on
page 209, and it must be one of the following:

o FORMAT statement label in the current program unit

e The name of an array containing the format specifications

e Any CHARACTER expression, except a CHARACTER expression in-
volving concatenation of an operand whose length specification
is an asterisk in parentheses, unless the operand is a
symbolic name of a constant

e An asterisk, implying list-directed formatting

¢ An integer variable name that has been assigned the statement
label of a FORMAT statement that appears in the same program
unit as the format identifier

9.1.5 End-of-File Specifier

An end-of-file specifier has the following form:

END = label

where

label is a statement label appearing in the current
program unit.

If a READ statement (see Section 9.2.4 on page 174) contains an
end-of-file specifier and an end-of-file condition but no error
condition is encountered during its execution, then the following
will result:

e Execution of the READ statement terminates.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 165
INPUT/OUTPUT STATEMENTS

e If the READ statement contains an I/0 status specifier, this
will be set as specified in Section 9.1.7. on page 166.

e Execution continues with the statement having the designated

label.

Example:

READ (10, 5, END = 70) TABLE I, J, K

Detection of an end-of-file condition during execution of this
statement causes transfer of control to statement 70. All items in
the input list, following the detection, of an end-of-file
condition, and all implied DO indices on input lists will have
unpredictable values.

An end-of-file condition will occur if an endfile record is
encountered during the reading of a file connected for sequential
access.

9.1.6 Error Specifier

The form of an error specifier is:

ERR = label

where

label is a statement label appearing in the current
program unit.

Scanned by Jonny Oddene for Sintran Data © 2011

lé6 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

If an error condition occurs during execution of an I/O statement
containing an error specifier the following will result:

e Execution of the I/0 statement terminates.

e The position of the file pointer specified in the statement
becomes undefined.

e If the statement contains an I/0 status specifier, this will be
set as specified below.

e Execution continues with the statement having the designated
label.

9.1.7 Input/Output Status Specifier

The form of an input/output status specifier is:

IOSTAT = s

where

s is a variable or array element of integer type.

Execution of an I/0 statement containing this specifier causes it
to be set as follows:

Zero ~ if neither an error nor an end-of-file condition
is encountered.
positive number -~ when an error condition occurs.

negative number ~ when an end-of-file but no error condition
occurs.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.7 EN 167
INPUT/OQUTPUT STATEMENTS

(ND-60.128) and 500 Loader/ﬂoﬁxtox nanual'fum~ee 136}

If an error condition occurs, and there is no ERR= specified, (or
an end-of-file condition and no END=)} and no IOSTAT= specified,
then the program is aborted.

— NOTE; - - e S W FRFUPERS iy v:....’.' : t

In routines compiled with STANDf”T
3 on the 28] FORTRAN User G.mde,

is not reserved and is treated llke any other varm

In ﬂD FGRTRAH when the end—of~f11e'éﬁnditlon is en re §

1000033 on the ND-100 and 200000000038 on the ua—sne!, but
ERRCODE will be set to +3

9.1.8% Record Specifier

A record specifier has the following form:

REC = rn

where

rn is an integer expression whose value is positive.
It specifies the number of the record to be read or
written in a file connected for direct access.

168 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

9.2 DATA TRANSFER OPERATIONS

Data transfer is the function of the I/0 statements READ, WRITE
and PRINT. The transfer of data occurs between storage and
peripheral devices and/or between storage locations.

The storage locations are identified by an input/output list.

The type and format of external data (on input or output) may be
controlled by using format specifications.

9.2.1 Input/Output Lists

An I/0 list specifies the names of the variables, arrays, array
elements, or character substrings to which input data is to be
assigned or from which output data is to be obtained.

The list is processed one item at a time, the transfer of each
item is completed before it is started for the next.

Example:

Suppose N is an integer and A is a one-dimensional array of type
REAL, then the code:

N =23
READ (5) N, A (N)

means that the value in the input stream on unit 5 is assigned to
N. Suppose this value is 10. The next value on the input stream is
assigned to the element A(l0). Note that the most recently read
value of N is used.

Implied DO lists (described below) which specify sets of array
elements, may also be included in I/0 lists.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 169
INPUT/OUTPUT STATEMENTS

9.2.1.1 Implied DO Lists

When an array name appears in an I/0 list, all elements of the
array are transferred in the order in which they are stored, see
Section 2.4.2. on page 39. Specific sets of array elements may be
specified in the I/0 list either individually or in the form of an
implied DO list.

The implied DO takes the same general form as that of a DO
statement:

(iolist , I = el, e2 [,e3])

where
iolist is an I/0 list which may contain further

implied DO lists to an arbitrary depth of nesting.
I the index control variable representing a

subscript appearing in the subscript list.

el, e2, e3 are the indexing parameters specifying the initial,
terminal and incremental values controlling the range
of I (e1, e2, e3 are each an INTEGER, REAL or
DOUBLE PRECISION expression). If e3 does
not appear, its value defaults to 1 (one).

Example:

REAL A(2,3)
10 FORMAT (6F10.3)
READ (1,10) A

The READ statement will read A in the following order:
Al(1,1), A(2,1), A(1,2), A(2,2]. A[(1.3), A(2,3) i.e.
first subscript varies most rapidly.

The same effect is achieved by the following statement:
READ [(1,10) ((A(I,J), I = 1,2), J = 1,3) i.e. the

innermost loop varies most rapidly.

Scanned by Jonny Oddene for Sintran Data © 2011

170 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

If you need to vary the other subscript most often, use the
following form: READ (1,10) ((A (1,J), J = 1,3), I = 1,2)

9.2.2 Formatted and Unformatted Data Transfer

I1/0 statements which include format specifications enable the user
to convert the data being transferred into a different form. This
may be required on output, for example, to make the data easier to
read.

During formatted data transfer, data is transferred with editing
between the items specified by the I/0 list and the file. The
record at the current position and possibly additional records are
read or written. The editing between the internal representation
and the character strings of a record, or sequence of records, is
directed by a format specification. This specification may be
contained in a FORMAT statement or in an array. If the format
identifier is an * (asterisk), this indicates list-directed
input/output, see the next section.

Unformatted data transfer is used for intermediate files for
internal use on disk and tape units. During unformatted data
transfer, data is transferred without editing between the current
record and the items specified by the I/O list. Exactly one record
is read or written.

9.2.3 List-Directed Input/Output

If the format identifier contained in an I/0 statement is an
asterisk, this causes the transfer operation to be list-directed.
List-directed input/output may also be called free-format.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 171
INPUT/OUTPUT STATEMENTS

Note:

In this case, a record specifier must not be present.

Data for list-directed transfers should consist of alternate
constants and delimiters. Delimiters may be one of the following:

e A comma optionally preceded or followed by one or more blanks.
e A slash, optionally preceded or followed by one or more blanks.

e One or more blanks between two constants (or following the
last constant).

9.2.3.1 List-Directed Input

The form of the input value must be acceptable for the type of the
input list item. Values which are consistent with format
specifications (see Chapter 10, on page 209), are also acceptable
in list-directed input except in the following cases:

e When the list item is of type REAL or DOUBLE PRECISION, the
corresponding input form should be numeric and suitable for F
editing, see Section 10.2.2.4. on page 217.

e For list items of type CHARACTER, the corresponding input
constants should be enclosed in single quotes, i.e. ‘ABC'. Each
quote within a CHARACTER constant must be represented by two
consecutive quotes. The constant may be continued over as many
records as needed. The characters blank, comma, and slash,
which are otherwise delimiters, may appear in CHARACTER
constants. If the lengths of the list item and CHARACTER
constant differ, the result is as for the CHARACTER assignment
statement, Section 7.4. on page 127.

Scanned by Jonny Oddene for Sintran Data © 2011

172 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

e When the corresponding list item is of type COMPLEX, the pair
of constants being input must be enclosed in parentheses and
separated from each other by a comma. Each constant should be
numeric as in the first rule above.

e Null values on input are represented by two consecutive commas
with no intervening constant(s). If a null value appears in the
data, its corresponding list element will retain its old value
and definition status.

e When all the items in the I/0 list have been assigned, any
remaining input data is ignored.

e A slash encountered in the input stream causes the current
input statement to terminate. Any remaining items in the I/0
list will retain their old values and definition status.

e The input values for List Directed Input can contain repetition
groups of the form :

v¥c or v*

where
v is the repetition factor.
c is a constant.

For example:
3*2.7, 2* , 2*'ABC’
which is the same as:

2.7, 2.7, 2.7, , ,'ABC','ABC’

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 173
INPUT/OUTPUT STATEMENTS

Note:

Blanks are never used as zeros, and embedded blanks are not
permitted in constants except within CHARACTER constants as
described in the second point in the list above.

9.2.3.2 List-Directed Output

The form of the values produced is the same as that for input
except in the cases of CHARACTER constants given here. The values
are separated by one or more blanks.

CHARACTER constants are not delimited by apostrophes on output.

Each output record begins with a blank character to provide
carriage control when the record is printed.

If successive values are identical, no replication factors are

employed.

The internal values are converted on output according to the
formats:

116 INTEGER
E16.7 REAL
D16.9 DOUBLE PRECISION
2E16.7 COMPLEX

A CHARACTER

| L16 LOGICAL '
D16.9 NUMERIC

Scanned by Jonny Oddene for Sintran Data © 2011

174 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

9.2.4 The READ Statement

The READ statement causes data to be transferred from external

media to internal storage, or from an internal file to internal
storage. The forms of the READ statement are as follows:

UNFORMATTED READ

e Form:

READ [u[,arglist]}[iolist]

Note:

The form READ (u) will cause one unformatted input record to be
skipped.

FORMATTED READ

e Form 1:

READ f [,iolist]

F— Note:

This statement reads from the standard input device which can be

set in the UNIT command, see the ND FORTRAN User Guide,
ND-60.265.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 175
INPUT/OUTPUT STATEMENTS

e Form 2:

READ (u,fl ,arglist] J[iolist]

e Form 3 (List-directed):

READ (u,*[,arglist])[iolist]

where

iolist,

arglist

is a unit specifier (see Section 9.1.3 on page 162)
is the format specifier (see Section 9.1.4 on page 163)

when present, is an input list'specifying the data items
whose values are to be transferred. A data item in an
input list must be one of the following:

e a variable

e an array

e an array element

e a character substring

is a list of optional items, separated by

commas, in which each of the following items may appear no
more than once:

REC=rn (see Section 9.1.8, on page 167)
IOSTAT=s (see Section 9.1.7, on page 166)
ERR=1label (see Section 9.1.6, on page 165)
END=label (see Section 9.1.5, on page 164)

If arglist contains a record specifier, the file should be opened
for direct access.

arglist

cannot contain both a record specifier and an end-of-file

specifier.

176 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

If the format identifier is an asterisk, the statement is a list-
directed input statement and a record specifier must not be
present.

Also, in such a case it is permitted to specify both END= and REC=
in the same arglist.

9.2.5 The WRITE Statement
The WRITE statement transfers data from internal storage to

external media or from internal storage to internal files. The
forms of the WRITE statement are as follows:

UNFORMATTED WRITE

e Form:

WRITE (ul ,arglist])[iolist]

FORMATTED WRITE

e Form 1:

WRITE fl,iolist]

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 177
INPUT/OUTPUT STATEMENTS

e Form 2:

WRITE (u,f[,arglist])[iolist]

e Form 3 (List-Directed):

WRITE (u,*[,arglist])[iolist]

where
u is a unit specifier (see Section 9.1.3 on page 162).
f is the format specifier (see Section 9.1.4 on page 163).

iolist, when present, is an output list identifying the data
items whose values are to be transferred. A data item in
an output list must be one of those:
e a variable
e an array
e an array element

® a character substring

any other expressions except a character expression
involving concatenation of an operand whose length
specification is an asterisk in parentheses, unless the
operand is the symbolic name of a constant.

arglist is a list of optional items, separated by commas, in
which each of the following items may appear no more
than once:
REC=rn (See Section 9.1.8, on page 167)
IOSTAT=s (See Section 9.1.7, on page 166)
ERR=label (See Section 9.1.6, on page 165)

If arglist contains a record specifier, the statement is a
direct access output statement (See the READ statement earlier).
If not, it is a sequential access output statement.

Scanned by Jonny Oddene for Sintran Data © 2011

178 ' ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

If the format identifier is an asterisk, the statement is a list-
directed output statement and a record specifier is not allowed.

9.2.5.1 Printing of Formatted Records

The transfer of information in a formatted record to certain
devices determined by the processor is called printing. If a
formatted record is printed, the first character of the record is
not printed. The remaining characters of the record, if any, are
printed on one line beginning at the left margin.

The first character of such a record determines vertical spacing
as follows:

CHARACTER VERTICAL SPACING EXTERNAL OUTPUT
BEFORE PRINTING

Blank One line LF record CR

0 Two lines . LF CR LF record CR
1 To first line of new page FF LF record CR

+ No advance record CR

$ No advance, CHR suppressed record

Any other character occurring in the first position is treated as
a blank.

If there are no characters in the record, the vertical spacing is
one line and no characters other than blank are printed on that
line.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

INPUT/OUTPUT STATEMENTS

179

A PRINT statement does not imply that printing will occur, and a
WRITE statement does not imply that printing will not occur.

The following logical SINTRAN device numbers are PRINT files. All

numbers are octal:

e Less than 100 except:

3

20 and 21
25,33,40,41
32,34

e 200 to 277
700 to 777
1040 to 1077
2000 to 2077

100 to 127

fast punch

cassette

magnetic tape controller 1
magnetic tape controller 2

see SINTRAN manual ND 60.128
for descriptions

if they are spooling files

Scanned by Jonny Oddene for Sintran Data © 2011

180 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

9.2.6 The PRINT Statement

The PRINT statement causes data to be transferred from internal
storage to the standard output device. This can be defined by the
UNIT command, see the ND FORTRAN User Guide, ND-60.265. It is
used only for sequential formatted data transfer. The PRINT
statement takes the following forms:

e Form 1:

PRINT f[,iolist]

e Form 2:

PRINT*[,iolist]

where

f is the format specifier (see Section 9.1.4 on page
163).

iolist if present, is the output list identifying the data

items whose values are to be transferred.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 181
INPUT/OUTPUT STATEMENTS

9.2.7 The INPUT Statement

In ND FORTRAN, list-directed input can be specified by the
statement:

INPUT (ul ,arglist] M iolist]

This is exactly equivalent to the List-Directed form (Form 3) of
the READ statement, see Section 9.2.4. on page 174.

9.2.8 The OUTPUT Statement

In ND FORTRAN, list-directed output can be specified by the
statement:

oUTPUT (ul ,arglist])l iolist]

This is exactly equivalent to the List-Directed form (Form 3) of
the WRITE statement, see Section 9.2.5. on page 176.

Scanned by Jonny Oddene for Sintran Data © 2011

182 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

9.3 FILE OPEN AND CLOSE

This section covers connecting and disconnecting files, creating
them, and establishing of parameters for I/0 operations. The
statements used for this are OPEN and CLOSE.

9.3.1 The OPEN Statement

The OPEN statement can connect an existing file to a unit, create
a file that is preconnected, create a file and connect it to a
unit, or change the specifiers of a connection between a file and
a unit. It has the form:

OPEN (ul ,arglist])

where

u is a unit specifier (see Section 9.1.3 on page 162.

arglist is a list of optional items, separated by commas, in
which each of the following items appear no more than

once:
IOSTAT = s (Section 9.1.7, page 166)
ERR = label (Section 9.1.6, page 165)
FILE = file

STATUS = sta

ACCESS = acc

FORM = fm

RECL =rl

BLANK = bl

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.7 EN 183
INPUT/OUTPUT STATEMENTS

(ND FORTRAN Extension)

PARITY = par

FIRSTREC = value (ND FORTRAN Extension)

FACTOR = fac (ND FORTRAN Extension)
IOCONVERT = ioco (ND FORTRAN Extension)
TYPE =ty (ND FORTRAN Extension)

MODE = seg (ND FORTRAN Extension)

BUFFER SIZE = bs . (ND FORTRAN Extension)

If the form UNIT= is used for the unit specifier, it may appear
anywhere in arglist. If UNIT= is omitted, u must be the first
specifier in the list.

refer to Chapter 15 Asdvanced I"ORTRAN Programming in th s
manyal.

The specifiers not previously described in arglist are described
in the remainder of this section:

FILE = file

where

file is a character expression whose value is the name of
the file acceptable to SINTRAN and is to be connected to
the specified unit. The default file type is SYMB.

If no file is specified, the actual open monitor call is not
executed, but the number must be within the range of legal unit
numbers to OPEN (1-127), otherwise an error condition will occur.

Scanned by Jonny Oddene for Sintran Data © 2011

184 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

If a file is specified, the unit number is used in subsequent I/0
statements to refer to this file. If this is the case, the unit
number must be positive and less than 128.

STATUS = sta

where

sta is a character expression whose value is OLD, NEW,
SCRATCH or UNKNOWN. If OLD is specified, the file must

exist; correspondingly, the file must not exist if NEW is
specified. If the specifier is omitted, a value of UNKNOWN
is assumed. If UNKNOWN is specified, the file is created
if it does not exist.

Successful execution of an OPEN statement with NEW specified
creates the file and changes the status to OLD.

If SCRATCH is specified with an unnamed file, the file is
connected to the specified unit for use by the executable program.
The file is deleted at the execution of a CLOSE statement
referring to the same unit or at the termination of the executable

progran.

_used {if it does
 will be deleted

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 185
INPUT/OUTPUT STATEMENTS

ACCESS = acc

where

acc is a character expression whose value is one of
the following:

e SEQUENTIAL
e DIRECT

and this determines the access method for the connection of the
file. The default is SEQUENTIAL. SEQUENTIAL or DIRECT access
should be used if the file is to be accessed through FORTRAN
READ/WRITE statements.

ik {READ Statemeﬁtsi

or output {READ/WRITE

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

186
INPUT/OUTPUT STATEMENTS

FORM = fm

where

fm is a character expression with the value
FORMATTED or UNFORMATTED. The value determines whether the
file is being connected for formatted or unformatted I1/0.
The default with direct access is UNFORMATTED, with

sequential access it is FORMATTED.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN ' 187
INPUT/OUTPUT STATEMENTS

RECL = rl

where

rl is an integer value which must be positive. It
gives the length in characters (bytes} of each record, in
the file to be connected with DIRECT access.

= Secanned-by Jonnyv-Oddene-for-Sintran-Data-©.2011

ND-60.145.8 EN

188
INPUT/OUTPUT STATEMENTS

If a FORMATTED file has a RECL= specifier in the OPEN statement,
and data to be output is shorter than the specified record length,

the record is padded with blanks.

_tput; and is shorter than

If a FORMATTED file has a RECL= specifier in the OPEN statement,
and data to be output is longer than the specified record length,

the record is truncated.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.7 EN 189
INPUT/OUTPUT STATEMENTS

where
data is the recor

uyy

BUFFER_SIZE = bs

where

bs is an integer value, which gives the number of
bytes in the buffer. The smallest value is 2048 bytes
(1 page); the value must be a potence of 2. The
BUFFER-SIZE used by FORTRAN can be smaller than specified
if there is not enough contiguous space in buffer pool.
Use of bigger buffer is most effective for big
contiguous files. In FORTRAN-100 this is a dummy
parameter.

Scanned by Jonny Oddene for Sintran Data © 2011

190 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

BLANK = bl

where

bl is a character expression whose value is NULL or
ZERO. It is valid only for files being connected for
formatted I/0 and it determines the treatment of blanks.
If NULL is specified, then all blank characters in numeric
input fields are ignored (except that a field of all
blanks has a value of zero). If ZERO is specified, then
all blanks are treated as zeros.
The default value is NULL.

The following specifiers are ¥ FORTRA!# Ex '

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 191
INPUT/OUTPUT STATEMENTS

Previous compllers used E} to S.ndlcate the fa.- t 'record
Only 0 and 1 are allowed as valid values; any other

value will give unpredictable results.
In NbD FORTRAN, this option can be uséd to maintai
with previeus ND FORTRAN compllers with regard 1Lt
records for a direct dccess file.

FACTOR = fac

where fac :
l 2, or 4)

as a numbex_' af bytes, .f_ac =
words, while fac = 4 means t.he number of 32-b_1t wo_rqs_ :

Scanned by Jonny Oddene for Sintran Data © 2011

192 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

It is an err
floating-po

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 193
INPUT/OUTPUT STATEMENTS

 MODE = mo (ND~ 500 oniy}

where

mo s a CHARACTE

the S

Scanned by Jonny Oddene for Sintran Data © 2011

194

ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

9.3.2 The CLOSE Statement

A CLOSE statement is used to terminate the connection of a file to

a unit.

It has the form:

CLOSE (ul ,arglist])

where

arglist

is a unit specifier (see Section 9.1.3, on page 162)

is a list of optional items, separated by
commas, in which each of the following items may appear
no more than once:

IOSTAT = s (see Section 9.1.7, on page 166)
ERR = label (see Section 9.1,6, on page 165)
STATUS = sta

where sta is a character expression whose value
is KEEP or DELETE.

The unit to be deleted must be explicitly specified. If
unit in the following: CLOSE (u, status = 'DELETE') has

negative value, no files are deleted.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 195
INPUT/OUTPUT STATEMENTS

9.4 FILE POSITIONING

The statements used for positioning are BACKSPACE, ENDFILE and
REWIND. The operations performed by these statements are normally
used for sequential files on disk or magnetic tape devices.

9.4.1 The BACKSPACE Statement

The BACKSPACE statement will cause a file, connected to a
specified unit, to be positioned at the start of the preceding
record. If there is no preceding record, the file position remains

unchanged.

Format:

BACKSPACFE u

or

BACKSPACE (ul ,arglist])

where

u is a unit specifier

Scanned by Jonny Oddene for Sintran Data © 2011

196 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

arglist is a list of the following optional items,
separated by commas, as given below:

IOSTAT
ERR =label (see Section 9.1.6 on page 165)

s (see Section 9.1.7 on page 166)

If the file was opened with a RECL parameter, then this parameter
is used to identify the position of the previous record. If the
file is a formatted file, the statement will execute slowly unless
RECL is specified.

9.4.2 The ENDFILE Statement

The ENDFILE statement is used to write an endfile record as the
next record of the file. This record will define the end of the

file that contains it.

Format:

ENDFILE u

or

ENDFILE (ul ,arglist])

where

u is a unit specifier

—Scanned by-Jonny Oddene for Sintran Data © 2044

ND-60.145.8 EN 197
INPUT/OUTPUT STATEMENTS

arglist is a list of the following optional items,
separated by commas, as given below:

IOSTAT s (see Section 9.1.7 on page 166)

ERR

label (see Section 9.1.6 on page 165)

instead of & unit

After execution of an ENDFILE statement, a BACKSPACE or REWIND
statement must be used to reposition the file prior to execution
of any data transfer I/0 statement.

NOTE:

An ENDFILE statement will not automatically be performed before
rewinding.

9.4.3 The REWIND Statement

Execution of a REWIND statement causes the specified file to be
positioned at its initial point (the load- point mark on a
magnetic tape). If the file is already positioned at its initial
point, execution of this statement has no effect on the position
of the file.

Format:

REWIND u

or

REWIND (ul ,arglist])

where

u is a unit specifier

Scanned by Jonny Oddene for Sintran Data © 2011

198 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

9.5 THE INQUIRE STATEMENT

The INQUIRE statement may be used to inquire about properties of a
particular named file or of the connection to a particular unit.
The INQUIRE statement may be executed before, during, or after a
file is connected to a unit. All values assigned by the INQUIRE

statement are those that are current at the time the INQUIRE
statement is executed.

The two forms of the INQUIRE statement are:

e INQUIRE by file:

INQUIRE(FILE=filenamel ,arglist])

where

filename 1s a character expression whose value, when
any trailing blanks are removed, specifies the name of
the file being inquired about.

arglist is a list of optional specifiers, taken from
the table given on the next page. The specifiers must be

separated by commas, and each may occur no more than
once.

The specifier FILE= may appear anywhere in arglist.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

199

e INQUIRE by unit:

INQUIRE(ul ,arglist])

where

arglist

is a unit specifier (see Section 9.1.3 on page 162)

is a list of optional specifiers taken from

the table given on the next page. The specifiers must be
separated by commas, and each may occur no more than

once.

If the form UNIT= is used for the unit specifier, it may appear
anywhere in arglist. If UNIT= is omitted, u must be the first
specifier in the list.

The following inquiry specifiers may be used in either form of the
INQUIRE statement, i.e. for arglist above:

IOSTAT
ERR
ACCESS
BLANK
DIRECT
EXIST
FORM
FORMATTED
NAME
NAMED
NEXTREC
NUMBER
OPENED
RECL

-

SEQUENTIAL

UNFORMATTED

s (see Section 9.1.7, page 166)
label (see Section 9.1.8, page 165)
acc

blnk

dir

ex

fm

Emt

fn

nmd

nr

num

od

rcl

seq

unf

Scanned by Jonny Oddene for Sintran Data © 2011

200 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

The specifiers are described in the rest of this chapter:

ACCESS=acc
where
acc is a character variable or a character array
element.

acc will be assigned the value SEQUENTIAL if the file is
connected for sequential access, or the value DIRECT if the file
is connected for direct access.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 201
INPUT/OUTPUT STATEMENTS

If there is no connection, acc becomes undefined.

BLANK=blnk

where

blnk is a character variable or a character array
element.

blnk will be assigned the value NULL if null blank control
is in effect for a file connected for formatted I/0, or the value
ZERO if zero blank control is in effect for a file connected for

formatted I/O.

If there is no connection, or if the connection is not for
formatted I/0, bInk becomes undefined.

DIRECT=dir
where
dir is a character variable or a character array
element.

dir will be assigned the value YES if DIRECT is one of the
allowed access methods for the file, or the value NO if DIRECT is
not one of the allowed access methods for the file.

If it is not possible to determine whether DIRECT is allowed as an
access method for the file, dir will be assigned the
value UNKNOWN.

Scanned by Jonny Oddene for Sintran Data © 2011

202 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

EXIST=ex

where

ex is a logical variable or a logical array
element.

For INQUIRE by file, ex will be assigned the value
.TRUE. if the file with the specified file name exists, or the
value .FALSE. otherwise.

For INQUIRE by unit, ex will be assigned the value
.TRUE. if the specified unit exists, or the value .FALSE.
otherwise.

FORM=fm

where

fm is a character variable or a character array
element.

fm will be assigned the value FORMATTED if the file is
connected as formatted I/0, or UNFORMATTED if the file is
connected for unformatted I/O0.

If there is no connection, fm becomes undefined.

FORMATTED=fmt

where

fmt is a character variable or a character array
element.

fmt will be assigned the value yes if formatted is an
allowed form for the file, or the value NO if FORMATTED is not an
allowed form for the file.

If it is not possible to determine whether FORMATTED is an allowed
form for the file, fmt will be assigned the value
UNKNOWN .

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 203
INPUT/OUTPUT STATEMENTS

NAME=nme
where
nme is a character variable or a character array
element.

nme will be assigned the name of the file being inquired
about, i.e. the file named in the FILE= specifier, or connected by
a UNIT= specifier.

The value assigned to nme will not necessarily be

identical to the name in the FILE= specifier. The value assigned
to nme is a fully qualified file name, which is

suitable for use in the FILE= specifier of the OPEN statement.

NAMED=nmd
where
nmd is a logical variable or a logical array
element.

nmd will be assigned a value .TRUE. if the specified file
has a name, or the value .FALSE. otherwise,

Scanned by Jonny Oddene for Sintran Data © 2011

204 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

NEXTREC=nr
where
nr is an integer variable or an integer array
element.

nr will be assigned an integer value, plus one, of the
record number of the last record read, or written, to a file
connected for direct access. If the file is connected, but no
records have been read or written, n:r will be assigned 1.

If the file is not connected for direct access, or the position of
the file is indeterminate because of a previous error condition,
nr becomes undefined.

NUMBER=num
where
num is an integer variable or an integer array
element.

num will be assigned the value of the unit currently
connected to the specified file.

If there is no unit connected to the specified file,
num becomes undefined.

Note:

If the form of the INQUIRE statement is inquired by file, and the
UNIT= specifier is set to -1, then the SINTRAN logical device
number will be assigned to the NUMBER= identifier. font=9;

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 205
INPUT/OUTPUT STATEMENTS

OPENED=0d

where

od is a logical variable or a logical array element.

od will be assigned the value .TRUE. if either the specified
file (specified by the FILE= specifier) or the unit
specified, is currently open, or the value .FALSE. if the
file or unit is not open.

RECL=rcl
where
rcl is an integer variable or an integer array
element.

rcl will be assigned the value of the record length of a
file connected for direct access. The value is in bytes, whether
the file has been connected for formatted or unformatted I/0.

If the file is not connected, or if the file is connected for
other than direct access, rcl becomes undefined.

SEQUENTIAL=seq

where

seq is a character variable or a character array
element.

seq will be assigned the value YES if sequential is one
of the allowed access methods for the file, or the value NO if
SEQUENTIAL is not one of the allowed access methods for the file.
If it is not possible to determine whether SEQUENTIAL is allowed
as an access method for the file, seq will be assigned
the value UNKNOWN.

Scanned by Jonny Oddene for Sintran Data © 2011

206 ND-60.145.8 EN
INPUT/OUTPUT STATEMENTS

UNFORMATTED=unf

where

unf is a character variable or a character array
element.

unf will be assigned the value YES if UNFORMATTED

is an allowed form for the file, or the value NO if
UNFORMATTED is not an allowed form for the file.

If it is not possible to determine whether UNFORMATTED is

an allowed form for the file, unf will be
assigned the value UNKNOWN.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 207

CHAPTER 10

FORMAT SPECIFICATIONS

— Scanned-by-Jonny-OddeneferSintran-bata~-S-204
Wran-Bata-©-2041

ND-60.145.8 EN 209
FORMAT SPECIFICATIONS

A format used in conjunction with formatted I/0 statements
provides information that directs the editing between the internal
representation and the character strings of one or a sequence of
records in the file.

A format specification provides explicit editing information. An
asterisk (*) as a format identifier in an I/0 statement indicates
list-directed input/output, see Section 9.2.3 on page 170.

10.1 FORMAT SPECIFICATION METHODS
Format specifications may be given either:

e in FORMAT statements, or

® as arrays of CHARACTER strings, CHARACTER variables, or other
CHARACTER expressions.

The FORMAT statement has the form:

FORMAT (F1, F2, F3., , Fn)
where
F1, F2,... etc. are format descriptors, described in the next
section.

The comma used to separate the descriptors may be omitted in the
following circumstances:

e before or after a slash or colon format descriptor

e between a P format descriptor and an F, E, D, or G descriptor
which follows immediately after it

Scanned by Jonny Oddene for Sintran Data © 2011

210 ND-60.145.8 EN
FORMAT SPECIFICATIONS

The FORMAT statement must be labeled.

With character format specifications, as in the second instance

above, the expression must contain format descriptor(s) enclosed
in parentheses.

10.2 FORMAT DESCRIPTORS

These descriptors describe the record structure of the data, the
format of the fields within the record, and the conversion,
scaling and editing of data within specific fields. A list is
given on the following page.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 211
FORMAT SPECIFICATIONS

DESCRIPTORS

COMMENTS

rFw.d
rEw.d
rEw.dFEe
rDw.d
rGw.d
rGw.d. Ee

rlw
rlw.m
rJw

rLw

rA
rAw

0w

Tc
TLc
TRc

SP
SS

BN
BZ

\ INTEGER field descriptors

Floating-point numeric field descriptors

LOGICAL field descriptor

Alphanumeric data field descriptor

s 4
N Extension)
AN Bxtension]

Field formatting descriptor

Numerical scale factor descriptor
Format control terminating descriptor
Record delimiting descriptor

Positional editing descriptors

Optionally positive sign editing descriptors

Blank interpretation descriptors

Scanned by Jonny Oddene for Sintran Data © 2011

212 ND-60.145.8 EN
FORMAT SPECIFICATIONS

Explanation:

r is a repetition factor and is a nonzero unsigned
integer constant.

d and m are unsigned integer constants.

w, e, n and ¢ are nonzero unsigned integer constants.
k is an optionally signed integer constant.

s is a string of characters.

NOTE:

w is known as the field width and is the size in characters of the
field, the part of a record read on input or written on output
under the control of a format specification.

In addition, repetition of groups of format descriptors can be
achieved by parentheses, e.g. r(Fl, F2, ... ,Fn) where Fi are
format descriptors.

The following sections provide detailed descriptions of the
various types of format descriptors and the manner in which they
are written and employed.

10.2.1 Interaction between the Format Descriptors and
the 1/0 List

The execution of an I/0 statement specifying a formatted data
transfer operation will initiate format control. The contents of
the I/0 list and the format specifications are scanned in step.
Whenever format control encounters a repetition factor in a format
descriptor, it determines whether there is a corresponding item in
the I/0 list. If there is, it transmits appropriately edited
information between the item and the record. If not, format
control terminates.

e = Seanned-by—Jonny-Oddene for Sintran Data © 20141

ND-60.145.8 EN 213
FORMAT SPECIFICATIONS

A list item of type complex will require two corresponding format
descriptors of type F, E, D, or G.

For P, X, T, TL, TR, S, SP, SS, H, BN, BZ, slash, colon, or text
format descriptors there are no corresponding items in the I/0O
list, and format control communicates information directly to or
from the record.

If format control encounters the rightmost parenthesis of a
complete format specification and another list item is not found,
format control terminates. It also terminates if a colon
descriptor is encountered in the format specification and another
list item is not found.

If the end of the format specification is reached and more items
remain in the list, a new record is established and the scan
process is restarted. It restarts either at the first item in the
format specification or, if parenthesised, with the last set of
descriptors within the format specification. (That is, restarting
at the first left parenthesis to the left in the format
specification just acted upon.)

A record is terminated by one of the following:

A slash format descriptor.

¢ The rightmost parenthesis of the FORMAT.

e The end of the I/0 list is encountered, and the rest of the
format descriptors require I/0 list items.

e A colon descriptor is encountered, and there are no more items
in the 1/0.

On input, only a single slash, /, will cause an additional record
to be read. A record is skipped when two slashes, //, are
encountered or a slash is followed by the end of the format
specifications.

If the record ends, due to the end of the format specifications or
a slash within them, then any data left in the input record is
ignored. If the input record is exhausted before the data
transfers are completed, then the transfer proceeds as if the
record were extended with blanks.

Scanned by Jonny Oddene for Sintran Data © 2011

214 ND-60.145.8 EN
FORMAT SPECIFICATIONS

On output, an additional record is written only when a slash, /,
is encountered in the format specifications. Two consecutive
slashes or one slash followed by the end of the specifications
will cause an empty record to be written.

If the file is an internal file, then a record is determined by
the length of the internal data item. For non-CHARACTER arrays,
and for CHARACTER variables, the file contains just one record.
For CHARACTER arrays, each element is a record, the order of
access being the same as the order of implied subscripting, with
the first subscript varying most rapidly.

10.2.2 Editing Provided by the Format Descriptors

10.2.2.1 Numeric Editing

The I, F, E, D and G descriptors are used for the I/0 of INTEGER,
REAL,, DOUBLE PRECISION and COMPLEX data. The following rules

apply:

e On input, leading blanks are not significant. The interpre-
tation of other blanks depends on whether any BLANK = (see the
OPEN statement) specifier and whether any BN or BZ control is
currently in effect. Plus signs may be omitted. A field of all
blanks is considered to be zero.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 215
FORMAT SPECIFICATIONS

On input, with F, E, D and G editing, a decimal point appearing
in the input field overrides its specification in a format
descriptor.

On output, the representation of a zero or positive value in
the field may be prefixed with a plus, as controlled by the S,
SP and SS descriptors. A negative internal value will be
prefixed by a minus in the field.

On output, the representation in the field is right justified.
After editing, if the number of characters is less than the
field width, leading blanks will be inserted. If the number of
characters exceeds the field width then the entire field of
width w is filled with asterisks.

10.2.2.2 The I and J Format Descriptors

The Iw, Iw.m, and Jw descriptors are for INTEGER editing, where
the field for editing occupies w positions. The specified I/0 list
item must be of type INTEGER.

In the input field, the character string must be in the form of an
optionally signed integer constant. On input an Iw.m descriptor is
treated identically to an Iw descriptor.

216 ND-60.145.8 EN
FORMAT SPECIFICATIONS

The output field for the Iw descriptor will consist of leading
blanks, if any, a minus sign if the internal value is negative, or
an optional plus if the internal value is positive. This is
followed by the magnitude of the internal value expressed as an
unsigned integer constant and must consist of at least one digit.

The output field for the Iw.m descriptor is the same as for the Iw
descriptor except that the unsigned integer constant consists of
at least m digits and, if necessary, leading zeros. The value of =
must not be greater than w. If it is zero and the internal value
is also zero, the output field will consist only of blanks,
regardless of sign control.

VALUE FORMAT oOUTPUT

1 I1 1
1234 I5 1234
-1234 15 -1234
0 I5 0
1234 15.0 1234

0 15.0

12 15. 4 0012
-12 15.4 -0012
0 I15.4 0000

10.2.2.3 REAL and DOUBLE PRECISION

The F, E, D and G format descriptors specify the editing of REAL,
DOUBLE PRECISION, and COMPLEX data. An I/0O list item corresponding
to one of these descriptors must also be REAL, DOUBLE PRECISION or
COMPLEX.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 217
FORMAT SPECIFICATIONS

In ND FORTRAN, if the list item is of

editing will bé perfommeéd accordin |
in the QPEN statement. '

In KD FORTRAN, the ¥, E and D descriptors can a '_ﬁe- be used far
eélting items of type NUMERIC.

10.2.2.4 The F Format Descriptor

The Fw.d descriptor implies that the field contains w positions,
the fractional part of which consists of d digits.

The input field consists of an optional sign, followed by a string
of digits optionally containing a decimal point. If there is no
decimal point, the rightmost digits are interpreted as the
fractional part of the value. The basic form may be followed by an
exponent of the form:

e Signed integer constant, or

e E followed by zero or more blanks, followed by an optionally
signed integer constant, or

e D followed by zero or more blanks, followed by an optionally
signed integer constant.

An exponent containing an E is processed identically to an
exponent containing a D.

The output field consists of blanks, if necessary, followed by a
minus if the internal value is negative, or an optional plus
otherwise. This is followed by a string of digits containing a
decimal point and representing the magnitude of the internal
value, modified by any established scale factor, and rounded to d
digits. Leading zeros are suppressed up to the decimal point, i.e.
if the value lies between zero and one, the first non-blank
character represents the position of the decimal point.

e Scanned a1V vlnnny Qddene for Sintran Data © 2011

218

Examples:

VALUFE FORMAT OUTPUT
1.2 F5.0 1.

-1.2 F5.0 -1.
1.2 F5.1 1.2
0.4 F5.2 .40

-0.4 F5.2 -.40
0. F5.2 .00
1. F5.2 1.00
-1. F5.2 -1.00

10.2.2.5 Scale Factor:

ND-60.145.8 EN
FORMAT SPECIFICATIONS

The P Format Descriptor

The P format descriptor specifies the scale factor in the form:

kP

where

is called the scale factor and is an optionally

signed constant.

The value of the scale factor is zero at the beginning of
execution of each I/0 statement. It applies to all subsequently
interpreted F, E, D and G descriptors until another scale factor
is encountered. It has the following effect upon the editing:

e With F, E, and D format descriptors on input {provided that no
exponent exists in the field) and the F format descriptor on
output, the externally represented number equals the internally
represented number multiplied by 10 ** k.

e On input, with F, E, D and G format descriptors, the scale
factor has no effect if there is an exponent in the field.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 219
FORMAT SPECIFICATIONS

e On output, with E and D format descriptors, the basic real
constant part of the quantity (optional sign, integer part,
decimal point and fractional part) is multiplied by 10 ** k.
The exponent is reduced by k.

e On output, with G editing, the scale factor has no effect
unless the magnitude of the value is outside the range for F
iting. If the use of E editing is required, the scale factor
has the same effect as using the E format descriptor on output.

ed

Example:

100
200
300
400
500
600

REAL REALARR (4]

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(1X, F12.4, 2PF12.4, F12.4, -2PF12.4)

(1X, E12.4, 1X, 2PE12.4, 1X, -1PE12.4, 1X, OPE 12.4)
(1x, 4F12.4, ///)

(1x, 4 (E12.4, 1X))

(F12.4, 2PF12.4, -1PF12.4, -2PF12.4)

(E12.4, 2PE13.4, -1PE13.4, OPE13.4)

READ (1,500) REALARR
WRITE (1,100) REALARR
WRITE (1,300) REALARR
READ (1,600) REALARR
WRITE (1,200) REALARR
WRITE (1,400) REALARR

Input and Output With F Editing:

1.6

1.6000
1.6000

.16E+1 160.E-2 1.6
160.0000 160. 0000 1.6000
1.6000 1.6000 160.0000

Scanned by Jonny Oddene for Sintran Data © 2011

220 ND-60.145.8 EN
FORMAT SPECIFICATIONS

Input and Output With E Editing:

2.5 . 25E+1 2.5 250.E-2
.2500E+01 25.000E-01 .0250E+03 . 2500E+01
. 2500E+01 .2500E+01 .2500E+02 . 2500E+01

10.2.2.6 The E and D Format Descriptors

The Ew.d, Dw.d and Ew.dEe descriptors indicate that the external
field occupies w positions, the fractional part of which consists
of d digits (unless a scale factor of greater than one is in
effect) and the exponent part consists of e digits. The e has no
effect on input.

The form of the input field is the same as that for the F format

descriptor described above.

With a zero scale factor the form of the output would be:

being the most significant digits after rounding.

exp is a decimal exponent, which for the value 76 or less will be
of the form:

n is a decimal digit.

——Scanned-by-Jonrmy-Oddensfor Sintran Data © 2011

oy o Ty

ND-60.145.8 EN 221
FORMAT SPECIFICATIONS

For the Ew.dEe descriptor, the form of the exponent is:

where the absolute value of the exponent must be:
£ (10 ** e) - 1

The scale factor k, described above, controls the decimal
normalisation.

There are two cases to consider:

o - d <k £0. The output field will contain (taking the absolute
value of k) k leading zeros and d-k
significant digits after the decimal point.

e 0 <k <d+ 2. The output field will contain k
significant digits to the left of the decimal point and
d-k+]l significant digits to the right of the decimal

point.

Other values of k are not accepted.

Examples:

VALUE FORMAT OUTPUT

0. E12.4 . O000E+00
123. E12.4 . 1230E+03
-123. E12.4 -.1230E+03
123. E12.4E1 .1230E+3
-123. E12.4FE1 -.1230E+3

Scanned by Jonny Oddene for Sintran Data © 2011

222 ND-60.145.8 EN
FORMAT SPECIFICATIONS

10.2.2.7 The G Format Descriptor

The Gw.d and Gw.dEe descriptors indicate that w is the width of
the external field, the fractional part of which contains d digits
unless a scale factor of greater than one is in effect. The
exponent part consists of e digits.

On input, the editing performed by the G format descriptor is the
same as that for F described earlier.

On output, the editing depends on the magnitude of the internal
value, N, in the following way:

If N <0.1 or N> 10**d, then editing performed by Gw.d on output is
the same as that by kPEw.d, and for Gw.dEe the result is the same
as that when using kPEw.dEe.

If 0.1 < N < 10**d, k (the scale factor) has no effect and
the results depend upon N as given below where F is the
format descriptor, and n takes the value 4 with the Gw.d
descriptor or e+2 for the Gw.dEe descriptor:

AI Conversion Type
0.1 £ N < 1 F(w-n).d
1 $N<¢ 10 Fl{w-n).d-1
10**(d-2) < N < 10**(d-1) Flw-n).1
10**(d-1] ¢ N < 10**d Flw-n).0

The output field will be followed by n blanks.

Note that the scale factor has no effect unless N is outside the
range of values for effective F editing.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 223
FORMAT SPECIFICATIONS

10.2.2.8 COMPLEX Data

Since this consists of separate pairs of real values the editing
is specified by two successive F, E, D, or G format descriptors.

The first descriptor will specify the real part, the second the
imaginary part. The two descriptors may be different and other
non-repeatable descriptors may appear between them.

10.2.2.9 S, SP and SS Format Descriptors

These edit descriptors are used to control the optional plus signs
in the output fields.

If none of the edit descriptors are used, then optional plus signs
will not be printed.

If an SP descriptor is encountered in a format specification, then
subsequent optional plus signs will be printed.

If an SS or S descriptor is encountered, then further optional
plus signs will not be printed.

10.2.2.10 The BN and BZ Format Descriptors

These descriptors specify the interpretation of non-leading blanks
in numeric input fields. Such blank characters, at the beginning
of the input statement execution, are interpreted as zeros or are
ignored, depending upon the BLANK=specifier in the OPEN statement
in effect.

Upon encountering a BN descriptor in the format specification, the
non-leading blanks referred to above will be ignored.

The effect of a BZ descriptor is to treat all such blanks as
Zeros.

BN and BZ affect the I, F, E, D, G, O and Z editing during input.

Scanned by Jonny Oddene for Sintran Data © 2011

224 ND-60.145.8 EN
FORMAT SPECIFICATIONS

10.2.2.11 The Text Format Descriptor

This descriptor has the form 'text' which is equivalent to a
character constant. It causes a character string (which may
include blanks) to be written from the enclosed characters of the
format descriptor itself. An apostrophe edit descriptor is not
valid on input. The width of the field is the number of characters
between the delimiting apostrophes, but not including the
apostrophes themselves.

If the asterisk is used as the text delimiter, then a quote is
treated as just another character. Correspondingly, if the
delimiter is a quote, then the asterisk is treated as an ordinary

character.

10.2.2.12 The H Format Descriptor

The descriptor has the form:

nHs

It causes the n characters forming the string s to be written on
the output stream.

An H descriptor must not be used on input.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 225
FORMAT SPECIFICATIONS

10.2.2.13 The T, TL, TR, and rX Format Descriptors

These descriptors control positional editing and specify at which
position the next character will be transmitted to or from the
record.

The position indicated by a T descriptor may be in either
direction from the current position. On input, this allows parts
of a record to be processed more than once, possibly with
different editing.

On output, since this group of descriptors do not themselves cause
characters to be transmitted, they do not affect the length of the
record. If characters are transmitted to or beyond the position
specified positions skipped are filled with blanks. The result is
as if the whole record were initialized with blanks.

In the Tc format descriptor, c is the character position to which,
or from which the record transmission of the next character is to
occur.

With the TLc descriptor, the transmission is to occur at a
position ¢ characters backward from the current one. (If the
current position should be ¢, the transmission to or from will
start from position 1 (one) of the record.)

With the TRc descriptor, the transmission will occur at a position
c characters forward from the present one. The rX format
descriptor causes the transmission of the next character to or
from a record to occur at a position r characters forward from the
current position. On input this position may be beyond the last
character of the record so long as no characters are transmitted
from such vositions.

In ND FORTRAN, r can be omit

as its value.

Scanned by Jonny Oddene for Sintran Data © 2011

226 ND-60.145.8 EN
FORMAT SPECIFICATIONS

10.2.2.14 The Slash, /, Format Descriptor

This descriptor denotes the end of data transfer on the current
record. The following will occur:

e On input from a sequential file, the remaining portion of the
record is skipped and the next reccrd becomes the current
record.

e On output to a sequential file, a new record is created and
becomes the last and current record of the file,

e For a direct access file, the record number i is
increased by one and the file is positioned at the beginning
of the record having that number. This record becomes the
current record.

D PORTRAN, tI ed by
a replication factor.

10.2.2.15 The L Format Descriptor

This descriptor has the form:

Lw

where

w indicates that the field occupies w positions.
The corresponding I/0 list item must be of type LOGICAL.

The input field consists of optional blanks, optionally followed
by a decimal point, followed by T for true or F for false. T or F
may have additional characters following them in the field.

The output field consists of w-1 blanks followed by T or F

according to whether the value of the internal LOGICAL variable
has the value .TRUE. or .FALSE.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 227
FORMAT SPECIFICATIONS

10.2.2.16 The A Format Descriptor

The A [w] format descriptor is used with CHARACTER I/0 list items.
If the optional field width w is used then the field consists of w

characters. If w is not specified, then the number of characters
in the field is the same as the length of the I/0 list item.

Let I be the length of the I/0 list item. On input, if

w2 I

then the rightmost I characters will be taken from the input
field.

If however:

w characters will appear left justified with I-w
trailing blanks.

On output, if:

the output field will consist of w-I blanks followed by
I characters from the internal representation.

Scanned by Jonny Oddene for Sintran Data © 2011

228 ND-60.145.8 EN
FORMAT SPECIFICATIONS

If, however:

wl I

the output field will consist of the leftmost w characters
of the internal representation.

Example:

VALUE FORMAT OoUTPUT

"ABCDE’ A ABCDE
"PQRST'’ A3 PQR
"PQRST’ A8 bbbPQRST
where

b represents a space character (blank).

10.2.2.17 The O Format Descriptor

. Scanned by Jonnyv Oddene for Sintran Data © 2011

ND-60.145.8 EN 229
FORMAT SPECIFICATIONS

Scanned by Jonny Oddene for Sintran Data © 2011

230 ND-60.145.8 EN
FORMAT SPECIFICATIONS

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 231

CHAPTER 11

FUNCTIONS AND SUBROUTINES

= Secanned bf‘ |BHF|§‘ Oddene-ftor-Sintran-Data-0-2041

ND-60.145.8 EN 233
FUNCTIONS AND SUBROUTINES

Functions and subroutines (also known as subprograms) are
procedures which can be called from within a program as many times
as required. These procedures may be either internal (contained
within the program in which they are referenced) or external
(self-contained executable procedures that may be compiled
separately) .

These are the categories of procedures:

e Intrinsic functions
e Statement functions
e External functions

e Subroutines

The first three categories are referred to collectively as
functions. The last two, subroutines and external functions, are
both referred to as externil proceduraes.

234 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

11.1 DUMMY AND ACTUAL ARGUMENTS

Some of the entities used by functions and subroutines may vary
from one call to another. Such entities are represented by dummy
arguments of the same type and are given in the form of a list
associated with the subprogram identifier. The actual arguments,
i.e., the values the entities are to take for a particular
reference to the subprogram, are given in a corresponding list
associated with this reference.

Example:

A function to evaluate the arithmetic mean (average) of two real
numbers could be defined as:

FUNCTION AVER(A,B)
AVER = (A+B) / 2.0
RETURN

END

The first statement defines AVER as a function and indicates that
it has two dummy arguments, A and B. The second statement
demonstrates how to evaluate the function. The third statement
shows that control is complete and is to return to the routine or
program which invoked this function. The END statement indicates
that the definition of this function is complete. These statements
are discussed in more detail later in this chapter.

To use the function to calculate an average, the following could
be written:

P = AVER(X, Y]

where

X and Y are the actual arguments in this invocation.
The statement demonstrates the invocation of AVER and the
assignment of the resulting function value to P. The
actual argument X is associated with the dummy argument A,
and the actual argument Y with the dummy argument B.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 235
FUNCTIONS AND SUBROUTINES

The result, as defined above, is (A+B)/2.0 which, in this case, is
(X+Y) /2.

The result can be used as part of an expression in the same manner
as any other operand.

For example:
P = Q+AVER(1.0, T+V) * S

which evaluates the average of the constant 1.0 and T+V. It then
multiplies the result by S, adds Q, and puts the resulting sum in
P.

Actual arguments may be constants (or their symbolic names),
function references, expressions involving operators, and
expressions enclosed in parentheses, if and only if the associated
dummy argument is 'read-only', i.e. its value is not changed by
the subprogram.

The type of each actual argument must agree with the type of its
associated dummy argument except when the actual argument is a
subroutine name, see Section 11.5, on page 264 or an alternate
return argument on Section 11.7 on page 270.

Example:

In the previous example demonstrating the AVER function, neither A
nor B are in any way changed by the execution of AVER,
consequently the use of constants and expressions is in order.

However, suppose a function called NEXTIN is defined to read the
next number from a file, and returns this number in the dummy
argument. Furthermore, it is a LOGICAL function and indicates
whether the next value was read, by returning .TRUE. if that was
the case, or .FALSE. if not. All the numbers on the file can be
summed as follows:

S5=0
10 IF (NEXTIN(X)) THEN
S=S+X
GO TO 10
ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

236 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

However, an array can be used for reading into, as follows:

DIMENSION A (1000)
DO 10 I=1, 1000
IF (.NOT.NEXTIN(A(I))] GO TO 20
10 'CONTINUE
20 CONTINUE
C Here I contains the index beyond the last one read.

Upon execution of a function or subroutine reference, an
association is established between the corresponding actual and
dummy arguments. The first dummy argument becomes associated with
the first actual argument, the second with the second and so on.

Argument association may be carried through more than one level of
procedure reference.

Argument association within a program unit terminates when a
RETURN or END statement in the program unit has been executed.

Length of Character Dummy and Actual Arquments

For a character-type dummy argument, the associated actual
argument (also of type character) must have a length equal to or
greater than that of the dummy arqument. When the lengths differ,
if e is the length in characters of the dummy argument, then the e

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 237
FUNCTIONS AND SUBROUTINES

leftmost characters of the actual argument become associated with
the dummy argument.

For an array name, the restriction on length is for the entire
array and not for each array element.

Example:
In the subroutine:
SUBROUTINE PRNAME ([NAME)
CHARACTER NAME* 20
WRITE (OUT, '(5X, A]'] NAME
END
there is a character dummy argument that is assumed to be of an

exact length of 20, and it will write 20 characters on the file
whatever the actual argument.

Thus if we have:

CHARACTER ALPHA*26
DATA ALPHA /' ABCDEFGHIJKLMNOPQARSTUVWXYZ' /

then:
CALL PRNAME (ALPHA (7:]])
will cause the characters 'G' to 'Z' to be written.
If the intention is to write out exactly the actual argument, then
the appropriate declaration of the dummy argument is:

CHARACTER NAME* (*]

Dummy and Actual Arqgument of Type NUMERIC

Normally, dummy and actual arguments have to be declared with the
same field width and scaling factor. In this case there is no
restriction in mixed arithmetic.

(2}
@
D
5
D
®
Q
2]
)
5]
P
D
o
o

ene-forSintran-Data © 2014

238 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

It is possible to declare a dummy argument of type NUMERIC without
specifying field width and scaling factor.

Example:
SUBROUTINE S(N])
NUMERIC (*) N

In this case, the dummy argument may not be used in mixed
arithmetic.

11.1.1 Variables as Dummy Arguments

A dummy argument that is a variable may be associated with an
actual argument that is a variable, array element, substring, or
expression.

The dummy argument may be defined or redefined with the subprogram
if the actual argument is:

e a variable name
e an array element name

e a substring name

I1f, however, the actual argument is:

e a constant (or the symbolic name of a constant)
e a function reference
e an expression involving operators

e an expression enclosed in parentheses

then the dummy argument must not be redefined within the program.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 239
FUNCTIONS AND SUBROUTINES

11.1.2 Arrays as Dummy Arguments

The number and size of dimensions of an array in an actual
argument may differ from those of an array in an associated dummy
argument.

If the actual argument is an array name, then the association
between actual and dummy arguments occurs as if the first element
of the actual argument were the actual argument.

If the actual argument is an array element name then the dummy
argument is associated with an array whose first element is the
actual argument.

The dummy argument must be wholly contained within the actual
argument.

Example:

Suppose there is a function defined to compute the arithmetic mean
(average) of an array. It contains two dummy arguments, the array
and the number of elements in the array.

Thus:

FUNCTION ARMEAN (A, NJ)
DIMENSION A (1:N)
C Add up the array first, then divide by the number of elements
R=0
DO 10 I= 1, N
R=R+A(1I])
10 CONTINUE
ARMEAN = R/N
RETURN
END

This function can be used to find the arithmetic mean of whole
arrays or parts of them, provided the parts are contiguous.

Scanned by Jonny Oddene for Sintran Data © 2011

240 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

If we have, for example:

DIMENSION AGES(1:100), SIZES(1:50, 1:50)

then the average of all ages is:

ALLAGE=ARMEAN (AGES, 100)

or, the first 10 ages would be given by:

FIRST=ARMEAN (AGES (1], 10)

or, the last 10 ages (91 to 100 inclusive):
FINAL = ARMEAN (AGES (91}, 10)

But the mean of the second, fourth, sixth ... etc., elements
cannot be computed since they are not contiguous.

When using a two-dimensional (or higher) array, the dummy argument
is associated with contiguous locations in the actual argument,
i.e. the first subscript varies most rapidly. Thus, clearly:
ALLSIZE=ARMEAN (SIZES, 50*50)

will compute the mean of all sizes, but:

SINGLE=ARMEAN (SIZES (1, 1), 50)

will examine

SIZES(1l, 1),SIZES(2, 1),SIZES(3, 1)}... SIZES(50, 1).

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 241
FUNCTIONS AND SUBROUTINES

11.1.3 Procedures as Dummy Arguments

A dummy procedure is a dummy argument identified as a procedure.
An example of its use is given below.

Example:

If a routine is required for approximate evaluation of an integral
using Simpson's rule on ten intervals, then, for it also to apply
to any function supplied by the caller, the definition might be as
follows:

FUNCTION SIMPSN (LO, HI, F)
REAL LO, HI, F
C
C This makes it clear that F is an entry point that can be invoked
c
EXTERNAL F C Interval size
H = (HI - LO} / 10.0
C Add up values of functions
R = F (LO)] + F (HI)
Do 101 =1, 9, 2
R =R+ R* F (LO+ I * H)
10 CONTINUE
DO 201 = 2, 9, 2
R=R+2* F (LO+ I* H)
20 CONTINUE
C Final calculation
SIMPSN = R * H/3.0
RETURN
END

Note that it is not mandatory to have an EXTERNAL statement, in
the function SIMPSN, but it is strongly recommended, so as to make
the intention clear.

Scanned by Jonny Oddene for Sintran Data © 2011

242 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

To evaluate the integral of one of your own functions (i.e. one
that you have defined yourself), write:

FUNCTION OWN (X]
OWN=(1+X*X) ** (-1)
RETURN

END

and call the Simpson routine with:
VAL = SIMPSN (0.5, 1.0, OWN)

Note that in this case, i.e. defining the function OWN, the
program unit containing the call to the function, SIMPSN,in the
statement "VAL=...", requires a statement:

EXTERNAL OWN

If the invocation of SIMPSN is the only place OWN appears in this
program unit, the EXTERNAL statement is required to inform the
compiler that OWN is the name of an external procedure.

To evaluate the integral using an INTRINSIC function, for example,
the trigonometric function SIN from O to 1 radians, the following
invokes the function SIMPSN:

INTRINSIC SIN
QUAD=SIMPSN(0.0,1.0,SIN)

This program unit must contain the INTRINSIC statement to use the
INTRINSIC SIN function.

The argument passed to the function SIMPSN, is the specific name
of the relevant INTRINSIC function, i.e. SIN for a REAL argument
giving a REAL result. It is not the generic name SIN which gives
access to the variants of SIN for REAL, DOUBLE or COMPLEX type

arguments.

Beware that a symbolic name passed as a dummy argument must not
occur in both an INTRINSIC and an EXTERNAL statement, within the
same program unit. An INTRINSIC statement will cause the supplied
functions to be used. An EXTERNAL statement will cause a user
written function to be used. This could be a user defined version
of a SIN function to be used instead of the supplied function;
note that if this is done, the generic name SIN is no longer
available in this program unit.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 243
FUNCTIONS AND SUBROUTINES

11.1.4 Asterisks as Dummy Arguments/Alternative Return
Arguments

A dummy argument that is an asterisk may appear only in a dummy
argument list of a SUBROUTINE statement or ENTRY statement in a
subroutine subprogram.

An asterisk dummy argument can only be associated with an actual
argument that is an alternate return argument in the relevant CALL
statement, see Section 11.7 on page 270.

An alternative return actual argument must be a statement label

preceded by an asterisk, as it appears within the argument list of
a CALL statement, see Section 11.7.1 on page 270.

Scanned by Jonny Oddene for Sintran Data © 2011

244 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

11.2 INTRINSIC FUNCTIONS

INTRINSIC functions are supplied by FORTRAN and have special
meanings. The specific names that identify the INTRINSIC
functions, their generic names, function definitions, argument
type, and result type appear in the table on page 225.

An IMPLICIT statement does not change the type of an INTRINSIC
function.

11.2.1 Specific Names and Generic Names

Generic names simplify the referencing of INTRINSIC functions
since the same function may be used with more than one argument

type.-

If a generic name is used to reference an INTRINSIC function, the
result type (except for those functions performing type
conversion, nearest integer, and the absolute value with a complex
argument) is the same as the argument type.

Example:

For the cosine routine, whose generic name is COS, the specific
names are COS, DCOS, and CCOS. If I, R, D, and C are variables of
type INTEGER, REAL, DOUBLE PRECISION, and COMPLEX respectively,
then:

e COS (R} will invoke the routine called COS.

e COS (D) will invoke DCOS since it requests the double precision
version.

e COS (C) will invoke the complex version CCOS.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 245
FUNCTIONS AND SUBROUTINES

Only a specific name may be used as an actual argument when the
argument is an INTRINSIC function. (However, the names INT, IFIX,
IDINT, FLOAT, SNGL, REAL, DBLE, CMPLX, ICHAR, CHAR, LGE, LGT, LLE,
LLT, MAX, MAXO, AMAX1, DMAX1l, AMAXO, MAX1, MIN, MINO, AMIN],
DMIN1, AMINO, MIN]1, IINT, I2INT, DFLOAT, DCMPLX, ININT, I2NINT,
I2DNINT, I2ABS, IMOD, I2MOD, I2SIGN, I2DIM, IMAXO, IMINO, IAND,
I2AND, IOR, I20R, IEOR, I2EOR, NOT, I2NOT, ISHFT, I2SHFT, IBIT,
I2BIT, CLBIT, I2CLBIT, STBIT, I2STBIT, GETBF, I2GETBF, PUTBF,
I2PUTBF must not be used as actual arguments.)

Otherwise, the actual arguments must agree in order, number, and
type with the specifications of the table and may be any
expression of the specified type. An actual argument in an
INTRINSIC function reference may be any expression except a
character expression of unknown length (one involving
concatenation of an operand having its length given by an asterisk
in parentheses, unless the operand is the symbolic name of a
constant) .

Scanned by Jonny Oddene for Sintran Data © 2011

246 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

Example:

REAL RES (10), ARG (10])
RES = SIN [ARG)

Another way of writing this assignment statement:
DO I = 1,10

RES(I) = SIN (ARG(I]))
ENDDO

11.2.2 Referencing an INTRINSIC Function

The reference to an INTRINSIC function uses its assigned name as
an operand in an arithmetic or logical expression.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 247
FUNCTIONS AND SUBROUTINES
INTRINSIC Number Type of
of Generic [Specific
Function Definition Arguments |[Name Name Argument Function
Type Conversion [Conversion 1 INT - Any arith Default int.
to Integer IFIX Real*4 Integer*4
INT(a) IDINT Real*8 Integer¥4
See Note 1 IINT Any arith Integer*4
I2INT Any arith Integer*2
Conversion 1 REAL REAL Any arith Real*4
to Real FLOAT Integer*4 Real*4
See Note 2 SNGL Real*8 Real*4
Conversion 1 DBLE DBLE Any arith Real*8
to Double DFLOAT Integer*4 Real*8
See Note 3
Conversion 1 or 2 CMPLX CMPLX Any arith Complex*8
to Complex DCMPLX Any arith Complex*16
See Note 4
Conversion 1 - ICHAR Character*1i |Default int.
to Integer
See Note 5
Conversion 1 - CHAR Integerx*2 Characterxt
to Character
See Note 5
Truncation INT(a) 1 AINT AINT Real*4 Real*4
See Note 1 DINT Real*8 Real*8
Nearest Whole INT(a+.5) if a>0 1 ANINT ANINT Real*4 Real*4
Number INT(a-.5) if a<0 DNINT Real*8 Real*8
Nearest Integer [INT(a+.5) if a>0 1 NINT - Real*4 Default int.
INT(a-.5) if a<0 ININT Real*4 Integer*4
I2NINT Real*4 Integer*2
IDNINT Real~*8 Integer*4
I2DNINT |Real*8 Integer*2

Scanned by Jonny Oddene for Sintran Data © 2011

248 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES
INTRINSIC Number Type of
of Generic [Specific
Function Definition Arguments |Name Name Argument Function
Absolute Value | a I 1 ABS 1ABS Integer*4 Integer»4
12ABS Integer*2 Integer*2
See_Note 6 ABS Real*4 Real*4
(ar2+a12)112 DABS Real*8 Real*8
CABS Complex*8 Real*4
CDABS Complex*16 |Real*8
Remainder a -INT(a /a_J*a 2 MOD - Default int |Default int
Sée Note11 IMOD Integer*4 Integerx*4
I12MOD Integer*2 Integer*2
AMOD Real*4 Real*4
DMOD Real*8 Real*8
Transfer of Sign | a1 if a Z 0 2 SIGN ISIGN Integer*4 Integer*4
—| a if a_<0 I2SIGN Integer*2 Integer*2
SIGN Real*4 Real*4
DSIGN Real*8 Real*8
Positive a —a_if a >a 2 DIM 1DIM Integer*4 Integer¥4
Difference Oiifza a 2 12DIM Integer*2 Integer*2
DIM Real*4 Real*4
DDIM Real*8 Real*8
Double Precision DBLE(al)*DBLE(aZ) 2 DPROD DPROD Real*4 Real*8
Multiply
Choosing Maximum [max(a ,a_,...) 22 MAX MAXO Default int [Default int
Value See Note S IMAXO Integer*4 Integer*4
12MAXO0 Integer*2 Integer*2
AMAX1 Real*4 Real*4
DMAX1 Real*8 Real*8
- AMAXO Default int |[Real*4
- MAX1 Real*4 Default int
Choosing Minimum min{(a ,a_,...) 22 MIN MINO Default int [Default int
Value See Note 9 IMINO Integer*4 Integer*4
I12MINO Integer*2 Integer*2
AMIN1 Real*4 Real*4
DMIN1 Real*8 Real*8
- AMINO Default int |Real*4
- MIN1 Real*4 Default int

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

249

INTRINSIC Number Type of
of Generic [Specific
Function Definition Arguments |Name Name Argument Function
Length Length of 1 LEN LEN Character Default int
Character Entity
See Note 11
Index of Location of 2 INDEX INDEX Character Default int
a Substring Substring a
in String a
See Note 10
Imaginary Part ai 1 IMAG AIMAG Complex*8 Real*4
of Complex See Note 6 DIMAG Complex*16 [Real*8
Arguments
Conjugate of a (ar,-ai) 1 CONJG CONJG Complex*8 Complex*8
Complex Argument CDCONJG |Complex*16 |Complex*16
Square Root J; 1 SQRT SQRT Real *4 Real*4
See Note 8 DSQRT Real*8 Real*8
CSQRT Complex*8 Complex*8
CDSQRT Complex*16 [Complex*16
Exponential ex*xa 1 EXP EXP Real*4 Real*4
DEXP Real*8 Real*8
CEXP Complex*8 Complex*8
CDEXP Complex*16 [Complex*16
Natural logtla) 1 LOG ALOG Real*4 Real*4
Logarithm
See Note 8 DLOG Real*8 Real*8
CLOG Complex*8 Complex*8
CDLOG Complex*16 |[Complex*16
Common logi0(a) 1 LOG10 ALOG10 Real*4 Real*4
Logarithm
DLOG10 Real*8 Real*8
Logarithm log2(a) 1 LOG2 ALOG2 Real*4 Real¥4
(base 2)
DLOG2 Real*8 Real*8

Scanned-bydJdonny-OddeneforSintran Bata204———————————————

250 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES
INTRINSIC Number Type of
of Generic |Specific
Function Definition Arguments |[Name Name Argument Function
Sine sin{a) 1 SIN SIN Real*4 Real*4
See Notes 7,8 DSIN Real*8 Real*8
CSIN Complex*8 Complex*8
CDSIN Complex*16 |Complex*16
Cosine cosfa) 1 COS Ccos Real*4 Real*4
See Notes 7,8 DCOS Real*3 Real*8
CCOS Complex*§ Complex*8
CDCOS Complex*16 [Complex*16
Tangent tan(a) 1 TAN TAN Real*4 Real*4q
See Note 7 DTAN Real*8 Real*8
Arcsine arcsinef{a) 1 ASIN ASIN Real*4 Real*4
See Note 7 DASIN Real*8 Real*8
Arccosine arccosin(a) 1 ACOS ACOS Real*4 Real*4
See Note 7 DACOS Real*8 Real*8
Arctangent arctan(a) 1 ATAN ATAN Real*4 Real *4
DATAN Real*8 Real*8
arctan(al,az) 2 ATAN2 ATAN2 Real*4 Real*4
DATAN2 Real*8 Real*8
See Note 7
Hyperbolic sinh(a) 1 SINH SINH Real*4 Real*4
Sine DSINH Real*8 Real*8
Hyperbolic coshfa) 1 COSH COSH Real*4 Real*4
Cosine DCOSH Real~*8 Real*8
Hyperbolic tanh{a) 1 TANH TANH Real*4 Real*4
Tangent DTANH Real*8 Real*8
Lexically aiz a, 2 - LGE Character |Default
Greater logical
Than or Equal See Note 12
Lexically ai)a2 2 - LGT Character Default
Greater than logical

See Note 12

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

251

INTRINSIC Number Type of
of Generic [Specific
Function Definition Arguments [Name Name Argument Function
Lexically ais a2 2 - LLE Character Default
Less logical
Than or Equal See Note 12
Lexically a1<a2 2 - LLT Character Default
Less than logical
See Note 12
AND argl.AND.arg2 2 IAND IAND Integer*4 Integer*4
See Note 13 I2AND Integer»*2 Integer*2
OR argl.0OR.arg2 2 I0R IOR Integer*4 Integerx4
See Note 13 120R Integer*2 Integer¥*2
Exclusive OR argl.NEQV.arg2 2 IEOR IEOR Integer*4 Integer*4
See Note 13 I12EOR Integer*2 Integer*2
NOT logical 1 NOT NOT Integer*4 Integer*4
complement I2NOT Integer*2 Integer*2
Bit Shifting shifts value 2 ISHFT ISHFT Integex*4 Integer*4
left or right I2SHFT Integer*2 Integer*2
See Note 14
Bit Extract 0 if bit arg2 of 2 IBIT IBIT Integer¥*4 Integer*4
argl is 0O,else -1 12BIT Integer*2 Integer*2
See Note 15
Clear bit sets bit arg2 2 CLBIT CLBIT Integer*4 -
of argl to O I2CLBIT |Integer*2 -
See Note 15
Set bit sets bit arg2 2 STBIT STBIT Integer*4 -
of argl to 1 I2STBIT |Integer*2 -
See Note 15
Get bit See Notes 15,16 3 GETBF GETBF Integer»4 Integerx4
field I2GETBF [Integer*2 Integer*2
Set bit See Notes 15,16 4 PUTBF PUTBF Integer*4 Integer*4
field I2PUTBF |Integer*2 Integer*2

Scanned by Jonny Oddene for Sintran Data © 2011

252 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

NOTES ON TABLE OF INTRINSIC FUNCTIONS

(1)

(2)

(3)

For a of type integer, INT (a) = a. For a of type real or
double precision, there are two cases:

<1, INT(a)=0:
>1, INT(a)

e if |a

e if |a
is the integer whose magnitude is the largest integer that
does not exceed the magnitude of a and whose sign is

the same as the sign of a. For example:

INT (-3.7) = -3

For a of type complex, INT (a) is the value obtained
by applying the above rule to the real part of a.

For a of type real, IFIX (a) is the same as INT (a).

The result of INT is the default integer type for this
compilation. (See "DEFAULT command" in the ND FORTRAN User
Guide, section 3.24.1)

To convert to INTEGER*2, use I2INT, and to INTEGER*4, use
TINT.

For a of type real, REAL (a) is a. For a

of type integer or double precision, a is converted to
type REAL. If significant bits are lost, the result is
truncated. If a has type complex, REAL (a) is the real
part of a.

If a is of type integer, FLOAT (a) is the same as REAL
(a).

For a of type double precision, DBLE (a) = a .

For a type of integer or real, the result is converted

to double precision so that no significant bits can be lost
in conversion.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 253
FUNCTIONS AND SUBROUTINES

(4)

(5)

CMPLX may have one or two arguments. If there is one
argument, it may be of type integer, real, double precision,
or complex. If there are two arguments, they may be of type
integer, real, or double precision, but must both be of the
same type.

If a has type complex, CMPLX (a) = a. For a of

type integer, real, or double precision, CMPLX (a) is the
complex value whose real part is REAL (a) and whose imaginary
part is zero.

CMPLX (a , a_) is the complex value whose real part is REAL
(ai) and'whofe imaginary part is REAL (az).

DCMPLX acts analogously with a result of DOUBLE COMPLEX.

ICHAR provides a means of determining the position of a
character in the collating sequence, which for ND machines is
the ASCII sequence. There are 128 values in this sequence.
For example, the letter A is number 65, and the first (NUL)
is 0 (zero).

The argument a is a character of length 1.

For any characters Cl and C2, (Cl.LE.C2) is

true if and only if (ICHAR (c)) .LE.ICHAR (c_}) is true, and
(c .EQ.c_) is true if and only if (ICHAR (c)°EQ.ICHAR (c_))
is true. ! 2

The result is of default integer type (see the ND FORTRAN
User Guide, section 3.24.1).

CHAR (i) returns the character in the ith position of

the collating sequence. The value is of type character of
length one. i must be an integer expression whose

Scanned by Jonny Oddene for Sintran Data © 2011

(6)

(7)
(8)

(9)

(10)

254 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

value must be in the range 0<i<128. In ND FORTRAN, no
check is made that the integer is in the restricted range;
hence care must be taken if parity bits are being
manipulated.

ICHAR (CHAR (i)) = i for 0<i<128 CHAR (ICHAR (c)) = c

for any character c.

A complex value is expressed as an ordered pair of reals,
(ar, ai), where ar is the real part and ai is
the imaginary part.

All angles are expressed in radians.

The result of a function of type complex is the principal
value.

(See the restrictions which follow these notes, on page 234.)

All arguments in an INTRINSIC function reference must be of
the same type.

INDEX (a , a_) returns an integer value indicating the
starting position within the character string a of a
substring identical to string a_. If a_ occurs

more than once in a, the start%ng position of the
first occurrence is returned.

If aa does not occur in ai, the value zero is
returned. Note that zero is returned if LEN {(a)<LEN (a).
Zero is also returned if the second argument is a null

string.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 255
FUNCTIONS AND SUBROUTINES

(11)

(12)

(13)

(14)

The value of the argument of the LEN function need not be
defined at the time the function reference is executed.

LGE (ai, a) returns the value .TRUE. if a =a

or if a follows a_ in the collating sequence

describéd in Ameri%an National Standard Code for Information
Interchange, ANSI X3.4-1977 (ASCII). Otherwise, it returns
the value .FALSE..

LGT (a , az) returns the value .TRUE. if a follows
a_ in the collating sequence described in ANsI X3.4 -
l§77 (ASCII), and otherwise returns the value .FALSE..

LLE (a , a_) returns the value .TRUE. if a =a
. 2 . .
or if a precedes a_ in the collating sequence
in ANSI X3.4-1977 (ASCII), and otherwise returns the value
.FALSE. .

LLT (a , a_) returns the value .TRUE. if a precedes
a_ in the collating sequence described in ANSI X3.4 -
l§77 (ASCII), and otherwise returns the value .FALSE..

If the operands for LGE, LGT, LLE, and LLT are of unequal
length, the shorter operand is considered as if it were
extended on the right with blanks to match the length of the
longer operand.

The logical operators are defined for integers in ND FORTRAN
by applying the operator to each bit position of the
arguments independently. These functions have identical
results to the logical operators, see Section 5.4 on page 99.

ISHFT (argl, arg2) shifts the bits in argl by

arg2 positions. If arg2 is positive, the shift

is to the left (i.e. towards the highest order bit). If
argl is negative, the shift is to the right. In both
cases, zeros are moved into the vacated bit positions.

For argl of type INTEGER*2, -16 £ arg2 £ 16 and for argl of type
INTEGER*4, ~32 £ arg2 ¢ 32.

Scanned by Jonny Oddene for Sintran Data © 2011

256 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

(15) Bits are counted from the rightmost (least significant) bit,
which is labeled 0. The leftmost bit is number 15 for
INTEGER*2, and 31 for INTEGER*4.

The entry points CLBIT, I2CLBIT, STBIT, I2STBIT are
subroutine entries. They may only be invoked by a CALL
statement, and they return no value.

(16) GETBF and PUTBF may only be used in ND-500.

GETBF: The first argument specifies the operand where the bit
field is taken from. The second argument defines the
bit number where the bit field starts. The third
argument specifies the number of bits in the bit
field.

DEST = GETBF (SOURCEl, STARTB, BTWIDTH)

PUTBF: The second and third arguments specify the bit field
as in GETBF. The fourth argument holds the bits that
that are going to be stored in the first argument's
bit map.

DEST = PUTBF (SOURCEl, STARTB, BTWIDTH, SOURCE2)

RESTRICTIONS ON RARGE OF ARGUMENTS AND RESULTS

Restrictions on the range of arguments and results for INTRINSIC
functions when referenced by their specific names are as follows:

(1) Remainder: The result for MOD, AMOD, and DMOD is un-defined
when the value of the second argument is zero.

(2) Transfer of Sign: If the value of the first argument of
ISIGN, SIGN, or DSIGN is zero, the result is zero, which is
neither positive nor negative.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 257
FUNCTIONS AND SUBROUTINES

(3)

(4)

(5)

Square Root: The value of the argument of SQRT and DSQRT must
be greater than or equal to zero. The result of CSQRT is the
principal value with the real part greater than or equal to
zero. When the real part of the result is zero, the imaginary
part is greater than or equal to zero.

Logarithms: The value of the argument of ALOG, DLOG, ALOGI1O,
DLOG10, ALOG2 and DLOG2 must be greater than zero. The value
of the argument of CLOG must not be (0., 0.). The range of
the imaginary part of the result of CLOG is:

pi < imaginary part £ pi.
The imaginary part of the result is pi only when the real

part of the argument is less than zero and the imaginary part
of the argument is zero.

Trigonometric functions: The values of the complex circular
functions are defined as follows:

If z is complex and z = x+iy, where x, y are real, then:

sin (z) = sin (x] cosh (y] + i cos (x] sinh (y]
cos (z) = cos (x) cosh (y)] - i sin (x) sinh (y])

- ﬁ:”

Scanned by Jonny Oddene for Sintran Data © 2011

258 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

11.3 STATEMENT FUNCTIONS

A statement function is a procedure specified by a single
statement that is similar in form to an arithmetic, logical, or
character assignment statement. This statement is nonexecutable
and not part of the normal execution sequence. However, these
definitions must follow all declaratives and precede executable
statements.

The general form of a statement function is:

symb (larg?, arg2, ...])=e
where
symb is the symbolic name of the statement function.
arg is a dummy argument.
e is an expression.

The relationship between symb and e must conform to the standard
assignment rules, see Chapter 7 on page 123.

Example:

The Euclidean distance between points (X1, Y1) and (X2, Y2} could be
represented by:

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 259
FUNCTIONS AND SUBROUTINES

DIST(X1, Y1, X2, Y2) = SQRT((X1-X2)**2+(Y1-Y2)**2)

To use this function to evaluate the distance between the i-th and j-
th points represented by arrays A (for the X's) and B (for the Y's),
the following could be written:

DIST(A(I), B(I}), A(J), B{(J))

It is not necessary to restrict the operands in the expression to the
statement function's dummy arguments. As an example, suppose the
values A, B and C are defined in a COMMON block, then the evaluation
of a quadratic expression with these coefficients could be defined as:

QUADR(X) = (A*X+B} * X+C

The dummy argument names have the scope of the statement function
only.

A statement function produces only one value, that is, the result of
the expression it contains.

The actual arguments must agree in order, number, and type with the
corresponding dummy arguments. An actual argument may be any
expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses,
unless the operand is the symbolic name of a constant.

11.3.1 Statement Function Restrictions

A statement function may be referenced only in the program unit that
contains the statement function statement.

A statement function statement must not reference another statement
function which appears in subsequent lines of the program unit.

The symbolic name identifying the statement function must not be used
as a symbolic name in any specification statement (except in a Type
statement for specifying the type of function) or as the name of a

—— Seanned-byJonny-Oddenefor-SintranbBata—©264H
R e — VT 1

260 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

common block in the same program unit.

An external function reference in the expression e must not cause a
dummy argument of the associated statement function to become
undefined or redefined.

The symbolic name of a statement function is a local name, see Section
1.3 on page 6, and must not be the same as the name of any other
entity in the program unit except the name of a common block.

The symbolic name of a statement function may not be an actual
argument. It must not appear in an EXTERNAL statement.

A statement function statement in a function subprogram must not
contain a reference to the name of the function subprogram or an entry

name in the function subprogram.

11.3.2 Referencing a Statement Function

A statement function is referenced by using its function reference in
an expression.

Note that if a statement function has no dummy arguments, its
definition and reference must still include empty argument lists.

For example:

LOGICAL CONSEC
CONSEC () = ABS (X-Y) .EQ. 1
IF (CONSEC ()] THEN

ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 261
FUNCTIONS AND SUBROUTINES

11.4 EXTERNAL FUNCTIONS

External functions are both external procedures and function
subprograms. They consist of a FUNCTION statement followed by a
sequence of FORTRAN statements which define desired operations. They
may also contain one or more RETURN statements and must be terminated
by an END statement.

The form of a FUNCTION statement is:

[type]l FUNCTION name [([argl [,arg2]l ...1)]

where

type is either INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, NUMERIC (fw,sc) or CHARACTER [*I]
where Iis the length of the result. Imay
have any of the forms of those allowed in the CHARACTER
statement, except that an integer constant expression must
not include the symbolic name of a constant. The default
for Iis one.

OTE:

Type may be specified in a Type statement instead.
The normal implicit rules apply if neither form is used.

Name is the symbolic name of the function sub-
program in which the FUNCTION statement appears; it is an
external function name.

arg is a dummy argument.
The symbolic name of the function subprogram must appear as a variable
name in this subprogram. Its value on execution of a RETURN or END

statement in the subprogram is the value of the function.

An external function may also modify one or more of its dummy
arguments.

Scanned by Jonny Oddene for Sintran Data © 2011

262 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

11.4.1 Actual Arguments for an Extermnal Function
Actual arguments in the function reference must agree in order, number
and type with the corresponding dummy arguments in the referenced

function. An exception to this rule is when a subroutine name appears
as an actual argument, because subroutine names do not have a type.

Actual arguments may be:

e An expression. (Except a character expression of unknown
length, e.g. one involving concatenation of an operand whose
length is given by an asterisk in parentheses, unless the
operand is the symbolic name of a constant.)

e An array name.

e An intrinsic function name.

e An external procedure name.

A dummy procedure name {see Section 11.1.3, on page 241).

Note that an actual argument in a function reference may be a dummy
argument in a dummy argument list within the same subprogram.

11.4.2 Function Subprogram Restrictions

A FUNCTION statement should only appear as the first statement of a
function subprogram. A function subprogram may contain any other
statement except a BLOCK DATA, SUBROUTINE, or PROGRAM statement.

The symbolic name of an external function is a global name and cannot,
therefore, be the same as any other global name.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 263
FUNCTIONS AND SUBROUTINES

A function specified in a subprogram may be referenced in any other
procedure subprogram or in the main pro-gram. A function subprogram
must not reference itself, either directly or indirectly. '

If a function has no dummy arguments, its FUNCTION statement may omit
the argument list. But its reference may not omit the list.

For example:

CHARACTER*1 FUNCTION NEXTCH
READ [(IN, ' (A1)’) NEXTCH
RETURN

END

then the form of the invocation must be, as in this example:

IF (NEXTCH().EQ.'+') GO TO 10

Scanned by Jonny Oddene for Sintran Data © 2011

264 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

11.5 SUBROUTINES
A subroutine is an external procedure which is identified by a

SUBROUTINE statement.

The SUBROUTINE statement must be the first statement of the subroutine
subprogram and it has the form:

SUBROUTINE name [([argl [,arg2] 1]
where
name is the symbolic name of the subroutine sub-

program in which the SUBROUTINE statement appears.

argl... is a dummy argument list consisting of
variable names, array names, or procedure names. A dummy
argument can also be an asterisk, see page 243.

If there are no dummy arguments, either of the forms, name or
name(}, can be used in the SUBROUTINE statement. Likewise a
subroutine can be referenced, according to the form in which it

was specified, by CALL name or CALL name().

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 265
FUNCTIONS AND SUBROUTINES

11.5.1 Subroutine Reference

A subroutine is referenced by the CALL statement which has the form:

CALL name [([arg? [,arg2] ...1J]
where
name is the symbolic name of the subroutine sub-
program.
argl... is an optional list of actual arguments.

A subroutine specified in a subprogram may be referenced within any
other procedure subprogram or within the main program. A subroutine
subprogram must not reference itself, either directly or indirectly.

The use of a subroutine name or an alternate return specifier (see the
RETURN statement on page 270, in this chapter) as an actual argument
is an exception to the rule requiring agreement of type between dummy
and actual arguments.

Note that an actual argument may be a dummy argument name that appears
in a dummy argument list within the subprogram containing the
reference. An asterisk dummy argument must not be used as an actual
argument in a subprogram reference.

An actual argument may be an array expression. The dimension bounds in
each array must be constants.

Scanned by Jonny Oddene for Sintran Data © 2011

266 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

11.5.2 Subroutine Subprogram Restrictions

A subroutine subprogram may contain any other statement except a BLOCK
DATA, FUNCTION, or PROGRAM statement.

The symbolic name is a global name, and cannot, therefore, be the same
as any other global name. See the examples earlier in this chapter.

11.6 THE ENTRY STATEMENT

The ENTRY statement enables additional entry points into an external
subprogram to be specified. It may appear anywhere within a function
or subroutine subprogram. However, it may not appear between a block
IF and its corresponding ENDIF statement, or between a DO statement

and the terminal statement of its DO-loop.

An ENTRY statement is nonexecutable. It has the form:

ENTRY name [([argl [,arg2]...1]]

where
name is the symbolic name of an entry in a function

or subroutine program and is known as an entry name.
argl... is an optional list of dummy arguments

which may be variable names, array names, dummy procedure
names, or an asterisk. This last argument type is per-
mitted only in a subroutine subprogram. A dummy procedure
is defined in Section 11.1.3, on page 241.

Note that if there are no dummy arguments, either name or name() can
be used in the ENTRY statement. A function specified by either form
must be referenced by name(). A subroutine specified by either form
can be referenced by a CALL statement, using either CALL name or CALL
name() .

The symbolic entry name may appear in a Type statement.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 267
FUNCTIONS AND SUBROUTINES

Execution of the external procedure begins with the first executable
statement following the relevant ENTRY statement.

An entry name can be referenced in any program unit except the one
containing the entry name in an ENTRY statement.

The order, number, type, and names of the dummy arguments of the ENTRY
statement may be different from the order, number, type, and names of
the dummy argqguments in the FUNCTION or SUBROUTINE statements and other
ENTRY statements in the same subprogram. However, each reference to a
function or subroutine must use an actual argument list that agrees in
order, number, and type with the corresponding dummy argument list of
the FUNCTION, SUBROUTINE, or ENTRY statement. The use of a subroutine
name or alternate return specifier (see Section 11.7, on page 270) as
an actual argument is an exception to the rule requiring agreement of

type.

For any particular subroutine call or function invocation at one of
its entry points, only those dummy arguments specified at the point of
entry can be assumed to have a value during this call/invocation.

For example:

SUBROUTINE SUB

ENTRY INIT (A,B,C)

ENTRY LOOKUP (A,X)

ENTRY STORE (Y,A)

END

If the routine was entered at entry INIT, the dummy arguments A, B and
C have values. But if the entry is via LOOKUP, then only A and X, but
not B nor C, will have values. Any access to B and C will give
unpredictable results.

Scanned by Jonny Oddene for Sintran Data © 2011

268 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

Note that in entry STORE, the dummy argument A is defined at a
different position in the 1list.

Within a function subprogram, all variables whose names are also the
names of entries are associated with each other and with the variable
whose name is also the name of the function subprogram. Therefore, any
such variable that becomes defined, causes all associated variables of
the same type to become defined and all associated variables of
different types to become undefined.

11.6.1 ENTRY Statement Restrictions

An entry name cannot be used as a dummy argument in a FUNCTION,
SUBROUTINE or ENTRY statement within the same subprogram in which it
appears as an entry name. It must not appear in an EXTERNAL statement.

In a function subprogram, a variable having the same name as the entry
name, must not appear in any statement preceding the ENTRY statement
associated with the entry name {except in a Type statement).

In a subprogram, a name used as a dummy argument in an ENTRY
statement, must not appear in an executable statement preceding that
ENTRY statement except in a FUNCTION, SUBROUTINE or ENTRY statement.
Likewise, it must not appear in the expression of a statement function
statement, unless the name is also a dummy argument of the statement
function, or appears in a FUNCTION or SUBROUTINE statement, or appears
in an ENTRY statement preceding the statement function statement.

If a dummy argument does appear in an executable state-ment, such
execution is only permitted if, during the execution of a reference to
the function or subroutine, the dummy argument is in the list of dummy
arguments of the procedure name referenced.

For example, if two functions have very similar algorithms barring
some initialization code, then they can be written in one external
function with a second entry point. The following function with two
entry points searches an array of integers, IA, for either an odd or

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 269
FUNCTIONS AND SUBROUTINES

even value, depending on the entry point.

FUNCTION IODD (IA, N)

I0DD = 0
M =1
GO TO 10

ENTRY IEVEN (IA, NJ
IEVEN = 0
M=20

C Common code starts here
10 CONTINUE
DO 20 K=1, N
IF (MOD (1A [K), 2).EQ.M) THEN
IF (M.EQ.1) IODD = K
IF (M.EQ.0) IEVEN = K
RETURN
ENDIF
20 CONTINUE
END

Scanned by Jonny Oddene for Sintran Data © 2011

270 ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

11.7 THE RETURN STATEMENT

The RETURN statement causes control to be returned from a subprogram
to the calling program unit. The form of a RETURN statement in a
function subprogram is:

RETURN

The form of a RETURN statement in a subroutine sub-program is:

RETURN [el

where

e is an integer expression.

During execution, the value of the expression e will select one of the
alternative RETURN actual arguments specified in the relevant CALL
statement, see the next section.

11.7.1 Execution of a RETURN Statement

Execution of a RETURN statement in the first of the above forms causes
control to be returned to the statement of the calling program
following the statement that calls the subprogram.

Execution of a RETURN statement in the second form given above also

returns control to the referencing program unit and it completes the
execution of the CALL statement whether e is specified or not.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
FUNCTIONS AND SUBROUTINES

However, if:

271

1€ efn
where
n is the number of asterisks in the SUBROUTINE or

subroutine ENTRY statement, then e identifies the e-th
asterisk in the dummy argument list. Control will now be
returned to the e-th statement label in the argument
list of the calling statement. This is known as the
alternate return specifier.

Example:

The following subprogram checks a number for validity (in this
case it tests for integers from 1 to 10) and takes an alternate

return if it fails.

SUBROUTINE VALCHK (X,*,*)

IF (X.LT.1.0R.X.GT.

10) RETURN 1

IF (INT (X).NE.X) RETURN 2

END

and it can be used as follows:

CALL VALCHK (TYPE,

* 90, * 91)

C Okay in normal continuation

90 STOP 'OUT OF BOUNDS'
91 STOP 'NOT AN INTEGER’

Execution of a RETURN (or

END) statement causes all entities

within the subprogram in which it occurs to become undefined

except for the following:

e Entities specified by SAVE statements.

e Entities in blank common.

Jonny-Oddsene-for Sintran Data © 2011

272 ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 273

CHAPTER 12

MAIN PROGRAM

ND-60.145.8 EN 275
MAIN PROGRAM

A main program is a program unit which does not have a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement.

An executable program must have exactly one main program in it and the
first executable statement of the main program is also the first
executable statement of the executable program which contains it.

12.1 THE PROGRAM STATEMENT

The form of a PROGRAM statement is:

PROGRAM pgm

where

pygm is the symbolic name of the main program in
which the PROGRAM statement appears.

A PROGRAM statement is not mandatory, but if it appears, it must be
the first statement of the main program.

Since the symbolic name, pgm, is global, it must not be used as any
local name within the main program, neither may it be the name of an
external procedure, BLOCK DATA subprogram, or COMMON block of the
executable program in which it appears.

Scanned by Jonny Oddene for Sintran Data © 2011

276 ND-60.145.8 EN
MAIN PROGRAM

A main program may not be referenced from a subprogram or from itself.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 277

CHAPTER 13

BLOCK DATA SUBPROGRAM

A ICICL st i 2044
U T

ND-60.145.8 EN 279
BLOCK DATA SUBPROGRAM

BLOCK DATA subprograms are used to provide initial values for
variables and arrays in named common blocks. They are nonexecutable
and more than one may appear in an executable program. The first
statement of a BLOCK DATA subprogram is a BLOCK DATA statement which
has the form:

BLOCK DATA [sub]

where

sub is the symbolic name of the BLOCK DATA subprogram
in which the statement appears.

The optional name sub is global and cannot therefore be the same name

as that of an external procedure, main program, COMMON block, or other
BLOCK DATA subprogram in the same executable procedure. Neither can it
be the same as any local name in the subprogram.

Initial values may be entered into more than one labelled COMMON block
in a single subprogram of this type.

13.1 BLGOCK DATA SUBPROGRAM RESTRICTIONS

The only other statements that can appear in a BLOCK DATA subprogram
are IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE, EQUIVALENCE, DATA,
END and Type statements. Comment lines are permitted.

280 ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 281

CHAPTER 14

ADVANCED FORTRAN PROGRAMMING

%

R
—iﬁt“%‘f‘g“; ‘-'{.

ND-60.145.8 EN 283
ADVANCED FORTRAN PROGRAMMING

14.1 EFFICIENT PROGRAMMING TECHNIQUES

14.1.1 Loops
In most cases a DO loop will execute faster than a loop coded with IF
statements and labels. The optimizing techniques used by the compiler
are applied fully to DO loops, but not constructed loops.
Thus:

Do 10 I = 1,100

10 SUM = SUM + A(I) * B(I)

is better than:

~
n -
[N

10 SUM suM + A(I) * B(I]
I =1+ 1
IF (I .LE. 100} GO TO 10

If the looping has no natural counter for use as a control variable,
then the DO WHILE should be used.

Thus:

I =1

DO WHILE (A(I) .GT. 0.0])
SuM = SuM + A(I) * B(I)
I =1+ 1

ENDDO

Scanned by Jonny Oddene for Sintran Data © 2011

284 ND-60.145.8 EN
ADVANCED FORTRAN PROGRAMMING

is better than:

I =1
10 IF (A(I) .GT. 0.0) GO TO 20
SUM = SUM + A(I) * B(I)
I =171+ 1
GO TO 10
20 CONTINUE

14.1.2 Loop Control Variable

A loop control variable of type INTEGER*2 will execute fastest on the
ND-100, and a loop control variable of type INTEGER*4 will execute
fastest on the ND-500. This is followed by INTEGER*4, REAL*4 and
REAL*8 on the ND-100 and INTEGER*2, REAL*4 and REAL*8 on the ND-500.
Note however, that if the natural control variable is, say, REAL, it
should be used since what is gained in speed of control of the loop
may be lost in doing more conversions, e.g. from an INTEGER type to
the working value that is required.

On the ND-500, the differences are much less marked than on the ND-
100.

14.1.3 Array Operations
e Example 1 : Filling an array
REAL A[100)
DO I = 1,100
A(I] = 0.0
ENDDO

The DO-loop may be substituted by the array operation:

A= 0.0

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 285
ADVANCED FORTRAN PROGRAMMING
e Example 2 : Moving an array
REAL A[100), B{100)
DO I = 1,100
Al(I) = B(I)
ENDDO
The DO-loop may be substituted by:
A = B
which will execute faster
¢ Example 3 : Subtraction of arrays
REAL A(100), B(100), c(100)
DO I = 1,100
A(I) = B(I) - C(I)
ENDDO
This may be substituted by:
A=B-°C

which will be executed faster if the command USE-APF-LIBRARY ON is
given.

14.1.4 Actual Argument Data Types

If there is any doubt about the data type of an expression in a
subroutine call, it should be explicitly converted to the desired type
by using the INTRINSIC functions, see Section 11.2. on the ND FORTRAN
Reference Manual, ND-60.145. If the expression is of the correct type,
there is no overhead involved, but the program is more explicit and
more easily understood, which is important for later maintenance.

Scanned by Jonny Oddene for Sintran Data © 2011

286 ND-60.145.8 EN
ADVANCED FORTRAN PROGRAMMING

Thus, if a REAL argument is needed, then:

INTEGER*2 I
REAL R
CALL SUBR (REAL(I + R})

makes it clear that a REAL argument is actually being used.

If the argument is a constant, then it can be forced to the
appropriate type by using the PARAMETER statement. This defines the
constant and gives an associated name. If the value is to be modified
later, then only the PARAMETER statement needs to be altered.

For example:

INTEGER*2 LOWEST
PARAMETER (LOWEST = -32768)
CALL TEST (LOWEST)

14.1.5 CHARACTER and Hollerith

Since Hollerith values in FORTRAN vary greatly from one manufacturer
to another, their use should be avoided if the program is to be
portable without potential difficulties. The CHARACTER data type

should be used instead.

Thus, the definition:

INTEGER*4 TITLE (5)

DATA TITLE/4HALPH,4HABET,4HICAL,4H ORD,4HER /
should be replaced by:

CHARACTER*20 TITLE
DATA TITLE/ ALPHABETICAL ORDER'/

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 287
ADVANCED FORTRAN PROGRAMMING

This is strongly recommended, even for transferring between the ND-100
and the ND-500 because of different word lengths and defaults.

14.1.6 CHARACTER Alignment - ND-100

Some Monitor Calls in SINTRAN require that data areas begin on a word
boundary. A CHARACTER variable can be forced on to a word boundary by
using an equivalence to an INTEGER variable.

For example:

CHARACTER*400 C
INTEGER*2 IC
EQUIVALENCE (C,IC)

will force the variable C to be word aligned.

14.1.7 File Accessing

Wherever possible the FORTRAN runtime system allocates buffers of
default 2K bytes, and uses these for operations on all files
accessed by FORTRAN programs. If a buffer is available, then access to
a file will be optimal, otherwise access is one byte at a time, with
consequent reduction in performance. It is strongly recommended that
for normal FORTRAN files, the access types SEQUENTIAL and DIRECT are
used. The runtime system will then use the most efficient method
available for the particular device.

Scanned by Jonny Oddene for Sintran Data © 2011

288 ND-60.145.8 EN
ADVANCED FORTRAN PROGRAMMING

14.1.8 1/0 Buffer Allocation

Whenever possible, the FORTRAN run-time system uses buffers for the
I/0 statements instead of a byte-by-byte transfer of data.

e The following applies to FORTRAN-100:

If no buffer is available at the time of opening the file, then the
access will revert to byte-by-byte operation. If the program is
executed in non-reentrant mode, the buffers are allocated
automatically in the space following the program {or data area if
running with SEPARATE-DATA ON) and before the COMMON blocks. The
maximum number of buffers is 20 and all are 2048 bytes long. They are
allocated when the file is OPENed. Each file which uses a buffer will
reserve one from this pool when it first requires it. The buffer will
be released only when the file is closed.

If the program is reentrant (ND-100 only), then the buffers are
allocated in the stack area, and each program has its own buffer pool.
The allocation is done by an explicit call to a routine provided for

the purpose:

CALL CREBUF (n)

where

the parameter n is INTEGER*2. If n is
positive, then n buffers are created in the stack area.

If n is less than or equal to zero, no action is
taken. If the buffers have already been allocated, no
action is taken (i.e., only the first call to CREBUF
has any effect).

Note that the FORTRAN-100 library must be loaded last of all, if
buffered I/0 is used.

The FORTRAN-100 library has as its last entry point, a pointer, called
FREE P, describing the area of unallocated address space, which is
assumed to begin immediately following FREE P. I/O buffers for non-
reentrant programs will use this unallocated address space. For non-
reentrant RT-programs, the RT-Loader command, SET-I0-BUFFERS must be
used to allocate buffer space.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 289
ADVANCED FORTRAN PROGRAMMING

e The following applies to FORTRAN-500:

The default buffer size is 2048 bytes. By using the BUFFER-SIZE
parameter in the OPEN statement, bigger buffers can be used. The
Linkage-Loader command, SET-IO-BUFFERS, must be used to allocate the
space needed for the I/O buffers. The argument (octal) specifies how
many buffers are to be allocated.

Scanned by Jonny Oddene for Sintran Data © 2011

290 ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 291

APPENDTIX A

ASCII CHARACTER SET

ND-60.145.8 EN
ASCII CHARACTER SET

ASCII CHARACTER SET

Octal Value Decimal| ASCII

Graphic Comments
Left Byte|\Right Byte| Value |Abbreviation
000000 0 0 NUL Null
000400 1 1 SOH Start of heading
001000 2 2 STX Start of text
001400 3 3 ETX End of text
002000 4 4 EOT End of transmission
002400 5 5 ENQ Enquiry
003000 [6 ACK Acknowledge
003400 7 7 BEL Bell
004000 10 8 BS Backspace
004400 11 9 HT Horizontal tabulation
005000 12 10 LF Line feed
005400 13 11 vT Vertical tabulation
006000 14 12 FF Form feed
006400 15 13 CR Carriage return
007000 16 14 50 Shift out
007400 17 15 SI Shift in
010000 20 16 DLE Data link escape
010400 21 17 DC1 Device control 1
011000 22 18 DC2 Device control 2
011400 23 19 DC3 Device control 3
012000 24 20 DC4 Device control 4
012400 25 21 NAK Negative acknowledge
013000 26 22 SYN Synchronous idle
013400 217 23 ETB End of transmission block
014000 30 24 CAN Cancel
014400 31 25 EM End of medium
015000 32 26 suB Substitute
015400 33 27 ESC Escape
016000 34 28 FS File separator
016400 35 29 GS Group separator
017000 36 30 RS Record separator
017400 37 31 us Unit separator
020000 40 32 SP Space

! 020400 41 33 ! Exclamation mark

" 021000 42 34 ” Quotation marks

8 021400 43 35 Number sign
022000 44 36 $ Dollar sign

Scanned by Jonny Oddene for Sintran Data © 2011

293

294 ND-60.145.8 EN
ASCII CHARACTER SET
Octal Value Decimal| ASCII
Graphic Comments
Left Byte|Right Byte| Value |Abbreviation
% 022400 45 37 % Percent sign
& 023000 46 38 & Ampersand
' 023400 47 39 ' Apostrophe
(024000 50 40 (Opening parenthesis
} 024400 51 41) Closing parenthesis
* 025000 52 42 * Asterisk
+ 025400 53 43 + Plus
s 026000 54 44 . Comma
- 026400 55 45 - Hyphen (Minus)
027000 56 46 Period {(Decimal)
i 027400 57 47 ! Slant
0 030000 60 48 0 Zero
i 030400 61 49 1 One
2 031000 62 50 2 Two
3 031400 63 51 3 Three
4 032000 64 52 4 Four
5 032400 65 53 5 Five
6 033000 66 54 6 Six
7 033400 67 55 7 Seven
8 034000 70 56 8 Eight
9 034400 71 57 9 Nine
035000 72 58 Colon
5 035400 73 59 3 Semicolon
< 036000 74 60 < Less than
= 036400 75 61 = Equals
> 037000 76 62 > Greater than
? 037400 77 63 ? Question mark
@ 040000 100 64 @ Commercial at
A 040400 101 65 A Uppercase A
B 041000 102 66 B Uppercase B
C 041400 103 67 C Uppercase C
D 042000 104 68 D Uppercase D
E 042400 105 69 E Uppercase E
F 043000 106 70 F Uppercase F
G 043400 107 71 G Uppercase G
H 044000 110 72 H Uppercase H
I 044400 111 73 I Uppercase 1
J 045000 112 74 J Uppercase J
K 045400 113 75 K Uppercase K
L 046000 114 76 L Uppercase L

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
ASCII CHARACTER SET

Octal Value Decimal| ASCII
Graphic Comments
Left Byte|Right Byte| Value |Abbreviation

M 046400 115 77 M Uppercase M
N 047000 116 78 N Uppercase N
0] 047400 117 79 0 Uppercase O

P 050000 120 80 P Uppercase P

Q 050400 121 81 Q Uppercase Q

R 051000 122 82 R Uppercase R

S 051400 123 83 S Uppercase S
T 052000 124 84 T Uppercase T

U 052400 125 85 6) Uppercase U

\ 053000 126 86 \ Uppercase V
W 053400 127 87 W Uppercase W
X 054000 130 88 X Uppercase X

Y 054400 131 89 Y Uppercase Y

z 055000 132 90 z Uppercase Z

[055400 133 91 [Opening bracket
\ 056000 134 92 \ Reverse slant
] 056400 135 93] Closing bracket
" or T 057000 136 94 or T Circumflex, up-arrow
_or « 057400 137 95 _» UND, BKR Underscore, back-arrow

060000 140 96 ", GRA Grave accent

a 060400 141 97 a, LCA Lowercase a

b 061000 142 98 b, LCB Lowercase b

c 061400 143 99 c, LCC Lowercase ¢

d 062000 144 100 d, LCD Lowercase d

e 062400 145 101 e, LCE Lowercase e

f 063000 146 102 f, LCF Lowercase f
g 063400 147 103 g, LCG Lowercase g
h 064000 150 104 h, LCH Lowercase h

i 064400 151 105 i, LCI Lowercase i

hj 065000 152 106 j. LCJ Lowercase j

k 065400 153 107 k, LCK Lowercase k

1 066000 154 108 1, LCL Lowercase 1

m 066400 155 108 m, LCM Lowercase m
n 067000 156 110 n, LCN Lowercase n

o 067400 157 111 o, LCO Lowercase o

p 070000 160 112 p. LCP Lowercase p
q 070400 161 113 q, LCQ Lowercase q

r 071000 162 114 r. LCR Lowercase r

s 071400 163 115 s, LCS Lowercase s

t 072000 164 116 t, LCT Lowercase t

u 072400 165 117 u, LCU Lowercase u

Scanned by Jonny Oddene for Sintran Data © 2011

295

296 ND-60.145.8 EN
ASCII CHARACTER SET
Octal Value Decimal | ASCII
Graphic Comments
Left Byte|Right Byte| Value |Abbreviation
v 073000 166 118 v, LCV Lowercase Vv
w 073400 167 119 w, LCW Lowercase w
x 074000 170 120 x, LCX Lowercase x
y 074400 171 121 y. LCY Lowercase y
z 075000 172 122 z, LCZ Lowercase z
{ 075400 173 123 {. uBr Opening (left) brace
| 076000 174 124 . VLN Vertical line
} 076400 175 125 . RBR Closing (right) brace
~ 077000 176 126 ~, TIL Tilde
077400 177 127 DEL Delete, rubout

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.,145.8 EN 297
ASCII CHARACTER SET

298 ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

APPENDTIX

B

ERROR MESSAGES

299

g Dbt =

o R

ND-60.145.8 EN

ot

atran Data @ 2011

ND-60.145.8 EN 301
ERROR MESSAGES

ERROR MESSAGES

B.1 COMPILER MESSAGES

During compilation, diagnostic messages will be issued for any
source text which either is, or may be, erroneous. These messages
appear in the program listing after the statement to which they
refer, and also on the background terminal.

They fall into three categories:

® errors
e warnings

e extensions

Error messages are produced when the compiler cannot make a sensible
interpretation of the program. Execution of these programs becomes
impossible.

Warnings are given when there is a potential fault, but an object file
is produced and execution may be possible.

Extension messages indicate where the program is using language
features which are not part of the ANSI FORTRAN 77 standard. These
messages are suppressed unless the STANDARD-CHECK compiler command is
on.

Some messages may be preceded by some text in quotes. This may be
either the name of some variables, or a part of the source program
with a '?' inserted. This '?' will show where the error was detected
and will usually be at or shortly after the item at fault.

Scanned by Jonny Oddene for Sintran Data © 2011

302 ND-60.145.8 EN
ERROR MESSAGES

The following list of the text of the error message texts is in
alphabetical order:

-1 IN SUBSTRING

ANSI FORTRAN 77 must have positive values as indexes in substring
values. ND FORTRAN uses -1 to mean stripping blanks from the
string.

1H ASSUMED

ANSI FCRTRAN 77 requires the length of an H-format item to be
explicitly stated. ND FORTRAN allows 'HX' to mean 'lHX'

1X ASSUMED

ANSI FORTRAN 77 requires the length of the X format item to be
explicitly stated. ND FORTRAN allows 'X' to mean 'lX'.

ALIGRMERT

A variable has been allocated to an address which cannot be
supported, a eg., an INTEGER beginning at an odd-byte boundary on
ND-100.

ALTERNATE RETURNS IN INTRINSIC FUNCTION

INTRINSIC functions cannot accept * return specifiers in their
argument lists.

ALTERNATE RETURNS INVALID IN THIS PROGRAM UNIT

A RETURN statement was found that specified an alternate return
expression when none of the entry points had * specifiers in their
argument list.

ALTERNATE RETURNS ONLY ALLOWED IN SUBROUTINES

Alternate return specifiers are only valid in subroutines, not in
functions.

APF-LIB WILL NOT BE USED BECAUSE OF THE ARRAY-INDEX—CHECK OPTION
Cannot have both the apf-1ib option and the array-index-check
option at the same time.

APT COMMON

The form of COMMON which is placed in the alternate page table on
NORD-10/ND-100 is non-standard, and not available on ND-500.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN . 303
ERROR MESSAGES

ARGUMENT(S) CONVERTED

ANSI FORTRAN 77 allows only those actual arguments which match the
corresponding dummy arguments without conversion. ND FORTRAN
converts, where possible, the arguments to INTRINSIC and statement
functions.

ARRAYS MUST HAVE THE SAME SHAPE
All arrays in an array-operation must have the same number of

[[[[dimensions. All dimensions must be of equal size.

‘x* ASSUMED
x is a character which the compiler has assumed was omitted in the
indicated position.

ASSUMED BECAUSE HAS 2 ARGUMENTS

The wrong generic or specific name was given for the number of
arguments (i.e., ATAN instead of ATAN2).

ASSUMED-SIZE ARRAY USED AS LIST ITEM

Assumed-size array must not be used as a list item on input/output
statements.

BRANCH INTO DO/IF REST

The compiler has found an attempt to transfer control from outside
to the inside of a DO loop or structured IF construct.

CANROT BE CALLED

The indicated item cannot be invoked. It is neither external,
INTRINSIC nor a statement function.

CARNOT BE DIMENSIORED

The named item cannot have dimensions (e.g., it may have been
previously declared as external).

CANNOT BE PASSED AS AN ARGUMENT

The item cannot be used as an actual argument (e.g., MAX
function).

CARNOT BE SAVED

The indicated item must not occur in a SAVE statement.

Scanned by Jonny Oddene for Sintran Data © 2011

304 ND-60.145.8 EN
ERROR MESSAGES

CANNOT BE USED IN A TYPE STATEMENT

A name has been explicitly given a type when this is not allowed
(e.g., SUBROUTINE name) .

CANNOT CONTAIN A LABEL

The indicated item is expected to have the value of a label in it
(i.e., set by ASSIGN statement). The item must be an unsubscripted
variable name of type INTEGER*2 on NORD-10/ND-100 and INTEGER*4 on
ND-500.

CANNOT CORVERT

The requested conversion cannot be carried out (e.g., arithmetic
to character).

CANNOT SELECT GENERIC ENTRY

There is no specific name for this generic entry which allows
arguments of the required type.

CHARACTER AND NON—CHARACTER EQUIVALENCED

ANSI FORTRAN 77 does not allow the mixing of character items with

non-character items in an equivalence list.

CHARACTER IN APT COMMON

Character variables cannot be referenced via the APT on
NORD-10/ND~100.

CHARACTER VARIABLE REFERENCED IN BOTH SIDES OF "="

It is illegal to refer to the same character variable in both

source and destination part of an assignment statement.

COOMMON BLOCKS EXCEED MEMORY

The total memory requirements of COMMON blocks exceeds 64K words
(ND-100 only).

CORFLICTING POSITIONRS

A variable has been allocated to two separate places by a
combination of COMMON and EQUIVALENCE lists.

CORTROL VARIABLE ROT INTEGER

In an implied DO in a DATA statement, the loop control variable
must be of type integer.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 305
ERROR MESSAGES

CONVERTED TO INTEGER

A non-integer arithmetic expression or constant was found where
ANST FORTRAN 77 requires an integer. ND FORTRAN allows the
conversion.

DATA IN BLANK COMMON

Initializing variables in blank common by a DATA statement is an
ND FORTRAN extension.

DATA IN COMMON

Initializing variables in COMMON with a DATA statement in a
program unit, other than a BLOCK DATA subprogram, is an ND FORTRAN
extension.

DATATYPE

The indicated data type is not in ANSI FORTRAN 77, but is a ND
FORTRAN extension.

DATA STATEMENT IS ILLEGAL

Data statement must not occur in a recursive subprogram.

DECLARATION MISSING

If IMPLICIT OFF is used, every symbolic name requiring a data type
must be declared in a Type statement.

DIVIDE BY ZERO

In a constant expression, an attempt was made to divide by zero.

DO HAS ZERO STEP

In a DO loop, or an implied DO loop, the step value is zero.

DO/IF NESTING ERROR

DO loops or structured IFs are not properly nested.

DOUBLY DEFINED

An attempt was made to use a name for two conflicting purposes.

DOUBLY SAVED

A variable appears in more than one SAVE statement.

Scanned by Jonny Oddene for Sintran Data © 2011

306 ND-60.145.8 EN
ERROR MESSAGES

DIMMY HAME IRSERTED

A name was expected. The compiler has created an internal name in
order to continue processing.

EMBEDDED UNARY SIGHN

ANSI FORTRAN 77 prohibits adjacent arithmetic operators, but ND
FORTRAN allows it, eg., A+-B.

ENTRY WOT ALLOWED IN DO/IF MEST

Entry statements cannot appear within DO loops or structured IF
constructs.

ENTRY ROT SET BEFORE RETURN

In a function subprogram, an entry point has not been assigned.
Invocation of this entry point might lead to an undefined value
being returned.

ERRCODE NORMAL VARIABLE IN STANDARD PROGRAMS

If STANDARD CHECK is ON, ERRCODE is treated like a normal
variable. Otherwise it has a special meaning, see Section 9.1.7.
EXPRESSION MISSING

An expression was expected but not found.

EXTENDS COMMON NEGATIVELY
An EQUIVALENCE list required a variable or array to occupy storage
preceding a COMMON block.

FORMAT
The indicated item is an ND FORTRAN extension.

FORMAT ERROR

A FORMAT list is incorrectly specified, e.g., missing comma.

FORMAT LABEL. TARGET OF BRANCH

Control cannot be transferred to labels on FORMAT statements.

HAS INVALID BOUNDS

The named variable cannot have the declared bounds. E.g., a local
variable was given non-constant bounds, or the upper bound was
less than the lower.

HAS INVALID LENGTH

The named variable cannot have the declared length. I.e., a local
character string was declared with a non-constant length.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
ERROR MESSAGES

HOLLERITH CORSTANT

Hollerith constants are not part of the ANSI FORTRAN 77 standard.
Appendix G describes how ND FORTRAN implements them. Character
strings should be used instead of Hollerith constants wherever
possible.

IGNORED IN BLOCK DATA

The indicated item is not valid in a BLOCK DATA subprogram, and
has been ignored in order to continue processing.

ILLEGAL INDEX IN IMPLIED DO

Array-index error in implied DO.

IN A DIFFERENT COMMON BLOCK

In an EQUIVALENCE statement, two items in a single list are in
different COMMON blocks.

INCLUDES RESTED TOO DEEPLY
The maximum depth of nesting for $INCLUDE commands is 5.

INCOMPLETE CHARACTER/HOLLERITH STRING

The end of a statement occurred before the end of a string.
Possible causes are: missing quote, or wrong count before
Hollerith H, or statement extends beyond column 72.

INEFFICIERT ACCESS MODE IN OPEN

This applies to the ND-500 only. The R, W, and RW access modes are

very inefficient. If possible, DIRECT or SEQUENTIAL should be
used.

INTEGER INVALID OR OUT OF RANGE

An unacceptable integer constant has been found. The valid values
depend on the context.

INTEGER MISSING, 1 ASSUMED

An integer was expected. The compiler assumes a value of 1 in
order to continue processing.

INTERNAL FILES NEED A FORMAT

Using unformatted I/0 on internal files is not allowed.

IRTRINSIC FUNCTION

The named function is an ND FORTRAN extension.

Scanned by Jonny Oddene for Sintran Data © 2011

307

308 ND-60.145.8 EN
ERPOR MESSAGES

INRVALID AS A DUMMY ARGUMENT

The specified item cannot be a dummy argument.

IRVALID AS FUNCTION/SUBROUTINE NAME

Cannot refer to a subprogram as both function and subroutine.

IRVALID CHARACTER, STATEMENT IGNORED

A character is found which is not in the FORTRAN character set.
Compilation continues with the next statement.

INVALID CHARACTER, SUBSTRING EXPRESSION

The character substring expression exceeds the maximum string
length.

INVALID CORSTART EXPRESSION

The expression cannot be computed at compile-time.

INVALID DIMENSION EXPRESSION

Dimension bounds must be integer expressions.

INVALID DO TERMINATION

The label specified in a DO statement was found with a statement
that cannot terminate a DO loop.

IRVALID IF EXPRESSION

The expression cannot be used in a Logical or Arithmetic IF. e.g.,
it may be of type CHARACTER.

INVALID IMPLICIT RANGE

The range in an implicit range is invalid (e.g., the second letter
precedes the first).

INVALID IN CONSTANT LIST

The indicated item cannot be used as a constant in a DATA state-
ment constant list.

IRVALID IN DATA LIST

The indicated item cannot be initialized in a DATA statement.

INVALID IN EQUIVALENCE LIST

The indicated item cannot share storage with any other item.

INVALID 1/0 LIST ITEM
Self-explanatory.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 309
ERROR MESSAGES

IRVALID 1/0 OPTION
Self-explanatory.

INVALID ITERATION

In an implied DO loop in a DATA statement, the iteration count is
negative or zero.

INRVALID LABEL
A label was expected but not found.

INVALID LEFT SIDE OF ASSIGNMENT
Self-explanatory.

IRVALID LOOP CONTROL

The control variable of a DO loop must be an integer, real, or
double-precision variable.

IRVALID OPERAND

The operand cannot be used with its operator.

INVALID SUBSCRIPT EXPRESSION
A subscript must be of type INTEGER.

LABEL DEFINED, BUT NOT REFERRED TO

The label is not referred to in other statements.

LABEL MISSING

A label was expected but not found.

LABEI, NOT ALLOWED WITH THIS STATEMENT
Self-explanatory.

LABEL ROT ASSIGNED

The label must pe assigned to an integer variable in a statement
label assignment statement.

LABEL. REFERS TO ITSELF

A potential endless loop was detected.

LABEI. UNDEFINED

A label was used which did not appear in the label field of any
statement.

LABEL. USED AS FORMAT

The label on an executable statement was found where a format
label was expected.

Scanned by Jonny Oddene for Sintran Data © 2011

310 ND-60.145.8 EN
ERROR MESSAGES

LIRE(S) ARE NON-BLANK BEYOND COL. 72

The indicated number of lines were found which had non-blank
characters in columns beyond the 72nd, and these lines formed part
of a statement or command. Comment lines which extend beyond
column 72 are not included in this number.

LOCAL ARRAYS EXCEED MEMORY

The total memory requirements of local arrays exceeds 64K words
(ND-100 only).

LOCAL DATA IGNORED IN RE-~ENTRANT MODE

Local variables cannot be initialized by DATA statements in
reentrant mode.

LOGICAL OPERATION ON IRTRGERS

Self~-explanatory.

MISPLACED '’

In an assigment statement, the left-hand side was not followed by
an equals sign.

MISSING DIMENSIOR LIST

No dimensions were given in an array declarator.

MISSING 'END'

The end of file was found on the program test file when a program
unit was still incomplete.

MISSING NAME, 'fMAIN' ASSUMED

In order that the compiler may continue its processing, it has

inserted the name £MAIN.

MISSING SPECIFICATION

An empty position was found in a list, e.g., 2 adjacent commas.

MISSING SUBSCRIPTS

An array name was used where it must be followed by a subscript
list.

MISSING 'THEN'

The compiler assumes the keyword 'THEN' to be present, in order to
continue processing the IF statement.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 311
ERROR MESSAGES

MIXED LENGTH CHARACTER ENTRIES

ANSI FORTRAN 77 requires that all entry names in a function
subprogram must be either of type non-character, or CHARACTER with
the same length (or an *). ND FORTRAN removes this restriction
completely.

MIXING CHARACTER AND NON—CHARACTER IN COMMON

ANSI FORTRAN 77 requires that all variables in a COMMON block be
character, or that all are non-character.

MIXING DOUBLE PRECISION ARD COMPLEX

ANST FORTRAN 77 does not allow arithmetic operations to have one
double precision and one complex operand. For the method of
treatment by ND FORTRAN, see Section 4.4.

MORE THAN 6 CHARACTERS, 31 SIGNIFICANT

ANSI FORTRAN 77 restricts names to 6 characters. ND FORTRAN uses
the first 31.

MORE THAR 7 DIMENSIONS

ANSI FORTRAN 77 allows no more than 7 dimensions for its arrays.
ND FORTRAN can support more except within the Symbolic Debugger.

MULTIPLE ASSIGNMENT ILLEGAL FOR ARRAYS

Assignment to an array must not occur in a multiple assignment
statement.

MULTI-DIMENSIONED ARRAYS NOT ALLOWED IR ARRAY-OPERATION

Only one~dimensional arrays are allowed in an array-operation.

. REITHER UNIT NOR FILE SPECIFIED

An INQUIRE statement must indicate the unit or file to be
examined.

RO DO SPECIFICATION IR LIST

A parenthesised data list has no DO specification present.

NO MORE SPACE

The compiler has exhausted its work area. The program unit is too
big to be compiled. Try subdividing it into subroutines, or moving
DATA statements to a BLOCK DATA subprogram.

NON-STARDARD CHARACTER
ND FORTRAN allows an underscore character ()} in symbolic names.

NON-STARDARD CONTINUATION

"&" has been used as a continuation mark.

Scanned by Jonny Oddene for Sintran Data © 2011

312 ND-60.145.8 EN
ERROR MESSAGES

NON—-STANDARD EQUIVALENCING

Two data items share storage in a way which may make the execution
of the program diverge from the ANSI FORTRAN 77 definition. E.qg.,
REAL and INTEGER arrays overlapping on a ND-100.

NON-STANDARD EXPRESSION
Self-explanatory.

NON-STANDARD INTERNAL FILE OR FORMAT
Self-explanatory.

NON-STANRDARD LABEL FIELD
ANSI FORTRAN 77 allows labels only in columns 1 to 5 inclusive.

NON-STARDARD REDEFINITION

A name is used, both as an external name or entry, and as a dummy
argument in a statement function.

ROT A FUNCTION
Self-explanatory.

NOT A LOGICAL EXPRESSION

In a structured IF, the expressions controlling each of the ELSE
IF's must be logical expressions.

NOT ALLOWED IN DIMENSION EXPRESSION
Self-explanatory.

ROT ALLOWED IN LOGICAL IF

The indicated statement cannot be part of a Logical IF statement.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
ERROR MESSAGES

NOT EROUGH CONSTARTS

There were more items to be initialized in a DATA statement data
list, than constants in the corresponding constant list.

NOT INTEGER CORSTANT EXPRESSION
Self-explanatory.

NOT IRTRIRSIC, EXTERNAL ASSUMED

The name is not one of the known INTRINSIC functions. It is
assumed to be an extermal function in order to continue
processing.

ROT SYMBOLIC CORSTART

A name found where a constant expression should appear, was not a
constant.

NO UNIT SPECIFIER
All I/0 statements must specify the unit on which they operate.

NULL STATEMENRT

ANSI FORTRAN 77 does not allow completely empty statements. E.g.,
after a Logical IF.

OCTAL CONSTANRT

Octal constants are an ND FORTRAN extension.

OPTION
The indicated option is an ND FORTRAN extension.

OUT OF DATA BEFORE CORSTANTS
In a DATA statement, the list of initialized items was shorter

than the list of constants.

OUT OF RANGE

The value on the right side of the assignment operator is too
large/small for the variable on the left side.

OVERLAPPING IMPLICIT RANGES

The same letter(s) occur in more than one range in implicit
specifications.

PARERTHESES ASSUMED AROUNRD PARAMETERS

The PARAMETER statement should have its list of symbolic constant
assignments enclosed in parentheses.

Scanned by Jonny Oddene for Sintran Data © 2011

313

314 ND-60.145.8 EN
ERROR MESSAGES

PRIORITY
Priority is valid only for ND FORTRAN programs.

REC ARD END CONFLICT

The end-of-file indication can only occur in a direct access READ
as an ND FORTRAN extension.

REC ARD FMT

Free format I1/0 is only valid in SEQUENTIAL access READ and WRITE
statements.

RECURSION

Recursion is valid only as an ND FORTRAN extension, and in
reentrant mode.

RETURN IN PROGRAM

In ANSI FORTRAN 77, a program must terminate with a STOP statement
or by reaching the END statement of the program subunit.

SAVE OF LOCALS NOT IMPLEMENTED IN REENRTRANT MODE
Self-explanatory.

SEMICOLON SEPARATOR

In ANSI FORTRAN 77, only one statement can be placed on a line. ND
FORTRAN allows a semicolon character (;) to separate statements on
a line.

SIRGLE DIMERSIONING

The ability to refer to a multidimensional array by use of a
single subscript is an ND FORTRAN extension.

SPECIFICATION AFTER DATA

ND FORTRAN allows DATA statements to appear before specification
statements.

STATEMERT

The indicated statement is an ND FORTRAN extension.

STATEMENT HAS TOO MANY CORTINUATION LINES

ANSI FORTRAN 77 allows 19 continuation lines in one statement. The
statement must be split.

SUBSTRING OF CONSTANT

Taking the substring of a symbolic constant is a ND FORTRAN
extension.

ND-60.145.8 EN 315
ERROR MESSAGES

SYMBOL NOT IN PARENTHESES A symbolic constant being
used to define a length of character items must be in parentheses
in ANSI FORTRAN 77.

SYRTAX ERROR IN ARITHMETIC CONSTANT
Self-explanatory.

SYNTAX ERROR, REST OF STATEMENT IGNORED

A previous syntax error has been found. Processing is continued at
the next statement.

TOO FEW ITEMS

In an EQUIVALENCE statement, each list must contain at least two
items.

TOO LARGE LENGTH SPECIFIER

A character variable may have a length up to 2047 on ND-100 and
32767 on ND-500.

UNRECOGNISED OR MISPLACED STATEMENT

The statement is either badly formed (e.g., a misspelled keyword)
or is out of sequence (e.g., a specification follows an executable
statement).

VARIABLE NOT ASSIGNED

The variable is referred to before it is assigned.

WRONG NUMBER OF ARGUMENTS
Self-explanatory.

WRONG USE OF ASSEMBLY NAMK

The restrictions on use of symbolic names declared in an ASSEMBLY
statement have not been observed.

ZERO LENGTH STRING
Self-explanatory.

FCOMMENT

ND FORTRAN allows comments to begin with a percent (%) character.

Scanned by Jonny Oddene for Sintran Data © 2011

316 ND-60.145.8 EN
ERROR MESSAGES

B.2 THE LOADER ERROR MESSAGES

These are described in the SINTRAN III Real Time Loader ND-60.051.

B.3 RUNTIME ERROR DIAGNOSTICS

The runtime error diagnostics are printed on the message output file,
which is the user terminal (the SINTRAN error device for RT) in the
format:

**%* date time FORTRAN EXCEPTION : (nnn) line error message IN LINE
11 RETURN ADDRESS aaaaaa UNIT uu DEVICE ddB

where:

nnn is the octal error number.

aaaaaa is the address in octal of the executing
.program of the compiled statement in which the error has
occurred.

11 is the line number in decimal within the
source program, of the compiled statement in which the
error has occurred.

uu is the FORTRAN unit number, decimal, on
which the error has occurred.

dd is the SINTRAN logical device number, octal,

on which the error has occurred.

Note that on the ND-500, more information about traps and
exceptions may be printed, see Appendix D.3.

If the error is serious the message ***JOB ABORTED*** is given and
the control returns to the operating system.

If the error is not serious, ERRCODE is set to the value of the

error code (and IOSTAT if applicable), and control returns to the
FORTRAN program.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8
ERROR MESSAG

EN
ES

317

Error Code
Decimal Octal Meaning [error text)
0 0 Not used
1 1 Not used
2 2 Bad file number
3 3 End of file
4 4 Card reader error (card read)
5 5 Device not reserved
6 6 Not used
7 7 Card reader error (card not read)
8 10 Not used
9 11 Not used
10 12 End of device (time-out)
11-16 13-20 Not used
17 21 Illegal character in parameter
18 22 No such page
19 23 Not decimal number
20 24 Not octal number
21 25 You are not authorized to do this
22 26 Directory not entered
23 27 Ambiguous directory name
24 30 No such device name
25 31 Ambiguous device name
26 32 Directory entered
27 33 No such logical unit
28 34 Unit occupied
29 35 Master block transfer error
20 36 Bit file transfer error
31 37 No more tracks available
32 40 Directory not on specified unit
33 41 Files opened on this directory
34 42 Main directory not last one released
35 43 No main directory
36 44 Too long parameter
37 45 Ambiguous user name
38 46 No such user name
39 47 No such user name in main directory
40 50 Attempt to create too many users
41 51 User already exists
42 52 User has files
43 53 User is entered

Scanned by Jonny Oddene for Sintran Data © 2011

318 ND-60.145.8 EN
ERROR MESSAGES

Error Code

Decimal Octal Meaning (error text)
44 54 Not so much space unreserved in directory
45 55 Reserved space already used
46 56 No such file name
47 57 Ambiguous file name
48 60 Wrong password
49 61 User already entered
50 62 No user entered
51 63 Friend already exists
52 64 No such friend
53 65 Attempt to create too many friends
54 66 Attempt to create yourself as friend
55 67 Continuous space not available
56 70 Not directory access
57 71 Space not available to expand file
58 72 Space already allocated
59 73 No space in default directories
60 74 No such file version
6l 75 No more pages available for this user
62 76 File already exists
63 77 Attempt to create too many files
64 100 Outside device limits
65 101 No previous version
66 102 File not continuous
67 103 File type already defined
68 104 No such access code
69 105 File already opened
70 106 Not write access
71 107 Attempt to open too many files
72 110 Not write and append access
73 111 Not read access
74 112 Not read, write and common access
75 113 Not read and write access
76 114 Not read and commeon access
77 115 File reserved by another user
78 116 File already opened for write
79 117 No such user index
80 120 Not append access
81 121 Attempt to open too many mass storage files

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
ERROR MESSAGES

319

Error Code
Decimal Octal Meaning {error text)

82 122 Attempt to open too many files

83 123 Not opened for sequential write

84 124 Not opened for sequential read

85 125 Not opened for random write

86 126 Not opened for random read

87 127 File number out of range

88 130 File number already used

89 131 No more buffer space

90 132 No file opened with this number

91 133 Not mass storage file

92 134 File used for write

93 135 File used for read

94 136 File only opened for sequential read or writ
95 137 No scratch file opened

96 140 File not reserved by you

97 141 Transfer error

98 142 Reserved by RT program

99 143 No such block
100 144 Source and destination equal

101 145 Illegal on tape device
102 146 End of tape
103 147 Tape already in use
104 150 Not random access on tape files
105 151 Not last file on tape
106 152 Not tape device

107 153 Illegal address reference in monitor call
108 154 Not last record on tape
109 155 File already opened by another user
110 156 File already opened for write by another use
111 157 Missing parameter
112 160 Two pages must be left unreserved
113 161 No answer from remote computer
114 162 Device cannot be reserved
115 163 Overflow in read
116 164 DMA error
117 165 Bad datablock
118 166 Control/modus word error
119 167 Parity error

Scanned by Jonny Oddene for Sintran Data © 2011

320 ND-60.145.8 EN
ERROR MESSAGES

Error Code

Decimal Octal Meaning [error text}
120 170 LCR error
121 171 Device error(read-last-status to get status)
122 172 No device buffer available
123 173 Illegal mass storage unit number
124 174 Illegal parameter
125 175 Write~-protect violation
126 176 Error detected by read after write
127 177 No EOF mark found
128 200 Cassette not in position
129 201 Illegal function code
130 202 Time-out (no datablock found)
131 203 Paper fault
132 204 Device not ready
133 205 Device already reserved
134 206 Not peripheral file
135 207 No such queue entry
136 210 No so much space left
137 211 No spooling for this device
138 212 No such queue
139 213 Queue empty
140 214 Queue full
141 215 Not last used by you
142 216 No such channel name
143 217 No remote connection
144 220 Illegal channel
145 221 Channel already reserved on remote computer
146 222 No remote file processor
147 223 Formatting error
148 224 Incompatible device sizes
149 225 Remote Processor not available
150 226 Tape format error
151 227 Block count error
152 230 Volume not on specified unit
153 231 Not deleted record
154 232 Device error
155 233 Error in object entry
156 234 0dd number of bytes (right byte in last word

insignificant)
157-256 234-400| Not used

ND-60.145.8 EN
ERROR MESSAGES

321

Error Code
Decimal Octal Meaning [(error text]
257 401 Fatal formatting system error.
This is a system error due to software or
hardware errors.
258 402 Too low parentheses level in format.
A maximum of 5 levels is permitted.
259 403 Illegal character in format
260 404 Illegal termination of format
261 405 Output record size exceeded.
A maximum of 256 characters is permitted.
262 406 Format requires greater input record
263 407 Integer overflow on input.
The result will be 21474836847 or -214748368
for INTEGER*4, and 32767 or -32768 for
INTEGER*2.
264 410 Input record size exceeded.
A maximum of 256 characters is permitted.
265 411 Backspace illegal
266 412 Bad character on input.
The input field is ignored and the result
will be zero.
267 413 Real overflow on input.
The result will be 1.0E76.
268 414 Real underflow on input.
The result will be 0.0.
269 415 String does not start on a word boundary
270 416 Real overflow on output
271 417 Formar specification does not apply
272 420 Overflow in exponent on input
273 421 Wrong number of parameter in call
274 422 Too many files opened (ND-100 only)
276 424 Mixing of FORMATTED/UNFORMATTED illegal
277 425 No more buffers available
278 426 Non-fatal error.
Result of FORTRAN system or hardware error.
ND-500 only.
279 427 Fatal error (I/0).
Result of FORTRAN system or hardware error.
ND-500 only.
280 430 1/0 error without special handling

Scanned by Jonny Oddene for Sintran Data © 2011

322

ND-60.145.8 EN
ERROR MESSAGES

Error Code

Decimal Octal Meaning [error text)

281 431 Zero base and negative exponent.
The result will be 21474836847 for integers
and 1.0E76 for reals.

282 432 Base elss than zero in exponentiation.
The result will be 0.0.

283 433 Overflow in exponentiation.

The result will be 1.0E76.

284 434 Neg. arg. in square-root.
The result will be 0.0.

285 435 Too large arg. in sine.
The result will be 0.0.

286 436 Too large arg. in cosine.
The result will be 0.0.

287 437 Too large arg. in exp-function.
The result will be 1.0E76.

288 440 Zero or neqg. arg. in logarithm.
The result will be -1.0E76.

289 441 Both args. zero in arc-tan.

The result will be 0.0.
290-293 442-445] Not used

294 446 Too large arg. in hyperb. sine.
The result will be 1.0E76.

295 447 Too large arg. in hyperb. cosine.
The result will be 1.0E76.

296 450 Too large arg. in square-root or complex
abs or square-root.

297-301 451-455| Not used

302 456 Illegal arg. in arc-sine/cosine.
The result will be 0.0.

303 457 Illegal arg. in tan.

The result will be 0.0.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 323

APPENDIX C

MONITOR CALLS

ND-60.145.8 EN 325
MONITOR CALLS

MONITOR CALLS

cC.1 INTRODUCTION TO USING MONITOR CALLS

If you want to communicate directly with the SINTRAN operating system
in a Fortran program, monitor calls are provided for this purpose. The
FORTRAN language and runtime system has a variety of facilities, such
as I/0 statements for accessing files or handling peripheral devices.
However, some situations require direct communication between a
program and the SINTRAN operating system. In general, this means that
the program is requesting a particular service be carried out, or that
some specific item of information is required.

The monitor calls may be called by using the statements:

MONITOH_CALL[number, par-1, ..., par-n)
or

MONITOH_C%LL['name', par-1, ..., par-n)
where

number is the monitor call number
'name’ is the name of the monitor call.

Further explanation of each monitor call is given in the manual
SINTRAN III Monitor Calls, ND-60.228.

Some monitor call routines are provided in the FORTRAN library. These
may be called from a FORTRAN program as either a subroutine or a
function subprogram. The main difference is that in using a monitor
call as a function, a value is returned indicating the result of
carrying out the request.

Most monitor calls may be used either as a function cor a subroutine.
However, some may only be used as a function since the function value
is the information which was requested, e.g. the monitor call TUSED
returns the CPU time used by a terminal since a logon.

Scanned by Jonny Oddene for Sintran Data © 2011

326 ND-60.145.8 EN
MONITOR CALLS

If a function returns a status code, it is strongly recommended that
this status be tested. If a monitor call is called as a subroutine,
then the status (e.g. error conditions) must be detected in a
different way than with functions. The system variable ERRCODE, which
is an ND FORTRAN extension, may be used with many of the monitor calls
(both functions and subroutines) to detect errors. If ERRCODE is used
to detect errors from monitor calls, the program must not be compiled
in STANDARD-CHECK ON mode.

Two examples, one of a monitor call used as a subroutine, and another
of a monitor call used as a function, are given below.

Example — a monitor call used as a subroutine

To set the system time and date, use the monitor call CLOCK as a
subroutine:

C Declarations

INTEGER PARAMS(7),BUNITS,SECONDS
INTEGER MINUTES,HOURS,DAYOFMTH,MONTH, YEAR

C Set up some convenient variable names for the time and date.
EQUIVALENCE (PARAMS(1),BUNITS], (PARAMS(2),SECONDS]
EQUIVALENCE (PARAMS(3),MINUTES), (PARAMS(4),6HOURS)
EQUIVALENCE (PARAMS(5),DAYOFMTH), (PARAMS(6),MONTH)
EQUIVALENCE (PARAMS(7),YEAR)

C Use the monitor call to get the system time and date.

CALL CLOCK(PARAMS]

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 327
MONITOR CALLS

Example — a monitor call used as a function

To read information directly from a device, use the monitor call INCH
as a function:

Cc
C

C

10

Declarations (including the monitor call to be used as a
function)

INTEGER INUNIT,ONECHAR
INTEGER INCH

Read one character from the device which is connected to the
FORTRAN unit number in INUNIT.

ONECHAR=INCH(INUNIT)
Check the system variable, ERRCODE, to see if all went well.
IF{ERRCODE .NE. 0) GO TO 10

Continue processing.

An error occurred; terminate.

CONTINUE
STOP

Scanned by Jonny Oddene for Sintran Data © 2011

328 ND-60.145.8 EN
MONITOR CALLS

1. The system variable ERRCODE contains a value upon return
from many monitor calls. The value returned indicates whether
the service requested has been successfully carried out or
an error or some unusual condition has arisen.

2. If a monitor call is used as a function, the function name
must be declared as a specific data type, to define for the
compiler the precise way that this variable name will be used.

All monitor calls which may be used in FORTRAN are listed in the Table
of monitor calls, in section C.3. For each monitor call, the table
describes the name which must be used, whether the monitor call is
typically used as a function or a subroutine, the number of parameters
and their corresponding data types, and whether ERRCODE contains a
value upon return.

More detailed information on all available monitor calls can be found
in the manual SINTRAN III Monitor Calls, ND-60.228.

The monitor calls available to FORTRAN programs, i.e. supplied in the
FORTRAN library, are limited to those described in section C.3, which
does not include all those available from the SINTRAN operating
system. Note that the name to be used for a specific monitor call in
FORTRAN could be different from the name used in the SINTRAN III
Monitor Calls manual. The example above shows how the monitor call
INCH is used; in the SINTRAN III Monitor Calls manual this monitor
call is named INBT. The table in section C.3 has the names to be used
in FORTRAN.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 329
MONITOR CALLS

C.2 COMMONLY USED MONITOR CALLS
This section illustrates some of the more commonly used monitor calls.
Each monitor call which has been selected has a brief explanation of

its function and an example of the way in which it can be called from
a FORTRAN program.

Summary of the monitor calls in this section

Alphabetical order: Numerical order:

Name No. |Example No. |Name Example
ABORT 105 [(cC.2.1) 1 |INCH (C.2.2)
BRKM 4 |(c.2.3) 2|OUTCH [(C.2.2)
CLOCK 113 ((C.2.1) 3 |ECHOM (C.2.3)
COMND 70 |(C.2.1) 4 |BRKM (C.2.3)
ECHOM 3 |(C.2.3) 11 [TIME (C.2.1)
ERMSG 64 |(C.2.6) 32 |MSGE (C.2.3)
HOLD 104 |(C.2.1) 64 |ERMSG (C.2.6)
INCH 1 [(C.2.2) 66 | ISIZE (C.2.3)
ISIZE 66 [(C.2.3) 70|COMND [(C.2.1)
MAGTP 144 |(C.2.3) 73 |SMAXD (C.2.4)
MSG 32 [(C.2.3) 75 |REABT |[(C.2.4)
OUTCH 2 |(c.2.2) 76 |SETBS (C.2.4)
OUTST 162 [(C.2.2) 100 [RT {C.2.1)
REABT 75 [(C.2.4) 104 [HOLD (C.2.1)
RFILE 117 |(C.2.5) 105 |ABORT (C.2.1)
RSIO 143 |(c.2.5) |[113|CLOCK |[(C.2.1)
RT 100 |(c.2.1) |[114|TUSED |[(C.2.1)
RTWT 135 [(Cc.2.1) 117 |RFILE (C.2.5)
SETBS 76 [(C.2.4) 120 |WFILE (C.2.5)
SMAX 73 |(C.2.4) 121 |WAITF (C.2.5)
TIME 11 [(Cc.2.1) 135 [RTWTF {C.2.1)
TUSED 114 [(C.2.1) 140 |WHDEV {C.2.2)
WAITF 121 ((c.2.5) |143|RSIOV |[{C.2.5)
WFILE 120 [(C.2.5) 144 |MAGTP {Cc.2.3)
WHDEV 140 ((C.2.2) 162 |OUTST (C.2.2)

330 ' ND~60.145.8 EN
MONITOR CALLS

Cc.2.1 PROGRAM ADMINISTRATOR

TIME — MON 11

Read the current internal time, in basic time units, i.e. 20
milliseconds per unit or some other value which has been set for the

operating system.
C Get the current internal time in basic time units.

INTEGER*4 TIME,CURRENTTIME, DUMMY

CURRENTTIME=TIME (DUMMY)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN ' 331
MONITOR CALLS

COMND - MON 70

Transfer the contents of a string to the SINTRAN command buffer.
The string will be executed by SINTRAN.

C Request that SINTRAN execute a command to create a file during
C execution of this program.

C Define a variable to hold the command string.
CHARACTER*40 COMMAND
C On the ND-100 the character string must start on a word

boundary. An equivalence with an integer variable will
C accomplish this.

@]

INTEGER I
EQUIVALENCE(COMMAND, I)

Set the contents of the string variable to a SINTRAN command.
Note that the character string does not begin with an @
character. Furthermore, the string must be terminated by an

OO0 n0n

apostrophe.
COMMAND='CREATE-FILE A-NEW-FILE:SYMB 100" "’
C Request that SINTRAN execute the contents of "command”.

CALL COMND(COMMAND)

332 ND-60.145.8 EN
MONITOR CALLS
RT — MON 100

Put an entry in the execution queue, to request execution of an RT
program.

C Put a request for execution of the RT program in the execution
C queue.

EXTERNAL RTJOB

CALL RT(RTJOB)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 333
MONITOR CALLS

HOLD — MON 104

Place the calling program in a waiting state for a specified period.
The program will continue execution after return from the call to
HOLD.

C Wait for 30 seconds, then output a message, including a count,
C once every ten time units for a limited period of time.

INTEGER TERMINAL,COUNT,TUNITS,SECONDS
INTEGER LONGWAIT,MSGWAIT,MSGLIMIT

C Initialize the terminal’'s logical unit number.
DATA TERMINAL/1/

C Initialize the time unit indicators.
DATA TUNITS/1/,SECONDS/2/

C Initialize the wait times, and the number of times the message
C loop should iterate.

DATA LONGWAIT/30/,MSGWAIT/10/,MSGLIMIT/500/

C Place the program in a wait state for 30 seconds.
CALL HOLD(LONGWAIT,SECONDS]

C Output a message with a count every tenth basic time unit.
DO 10 COUNT = 1,MSGLIMIT
WRITE(TERMINAL,100) COUNT

100 FORMAT(X,'Still alive in here! Message number: ',IS5)

CALL HOLD(MSGWAIT,TUNITS)

C Do some other processing.

10 CONTINUE

Scanned by Jonny Oddene for Sintran Data © 2011

334 ND-60.145.8 EN
MONITOR CALLS

ABORT ~ MON 105

Stop an RT program by setting it in a passive state. The program will
be removed from the time or execution queue, all resources will be
released and further periodic execution will be prevented.

C Stop the RT program COLLECT.

EXTERNAL COLLECT

CALL ABORT(COLLECT)

CLOCK ~ MON 113

Get the current time and date from the operating system.

C Get the system time and date and print them in a pleasant
C format.

INTEGER PARAMS(7)

C Get the time and date.
CALL CLOCK(PARAMS)

C Print the time and date.
WRITE(PRINTFILE,100) (PARAMS(1), I=2,7)

100 FORMAT(X, 'The time is : ',12,'.',I12,'.',12,/,
* X, 'The date is : ',I12,'/',12,'/ ,14)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 335
MONITOR CALLS

TUSED — MON 114

Compute the CPU time used by a part of a Fortran program. The CPU time
used by the user's terminal since the last logon is computed at two
points in time (before and after the part in which we are interested),
and the difference reveals the time used by the program part.
C Compute the time required to complete execution of a loop.

INTEGER*4 CPUSTART, CPUFINISH, LOOPTIME, TUSED
C Get the CPU time prior to the loop.

CPUSTART=TUSED (DUMMY)
C The loop we want to time.

DO
C Something 1is done here.

ENDDO

C The loop has finished. Compute how long it took.

CPUFINISH=TUSED{DUMMY }
LOOPTIME=CPUFINISH-CPUSTART

Scanned by Jonny Oddene for Sintran Data © 2011

336 ND-60.145.8 EN
MONITOR CALLS

RTWT — MON 135

Set the RT program issuing the call in a wait state until it is
restarted, e.g. by another program calling RT (MON 100). The program
which issued the RTWT call will restart at the statement immediately
following the RTWT call.

PROGRAM HOPE

C Set this program in a wait state, hoping that it is restarted
C sooner or later.

INTEGER TERMINAL
C Initialize the terminal’'s logical unit number.
DATA TERMINAL/1/
C Take a rest for a while.
CALL RTWT
C After being restarted, carry on from here. Tell the user.

WRITE(TERMINAL,*) 'Hurray, we are off again!’

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 337
MONITOR CALLS

c.2.2 RETRIEVING/CHANGING DEVICE INFORMATION

INCH - MON 1

Read one byte from a device. If the device is a data link or word-
oriented internal device, read one word.

C Read one byte into the variable ICHAR from a device. The device
C must have been opened and its Fortran unit number stored in the
C variable IFNUM (or a SINTRAN LDN may be used]).

ICHAR=INCH(IFNUM])

C If not successful, print a File System error message.

IF (ERRCODE .NE. O] CALL ERMSG(ERRCODE)

OUTCH - MON 2

Write one byte to a device or to a file. If the device is a data link
or word oriented internal device, write one word.

C Write one byte from ICHAR to a file. The file must have been
C opened and its Fortran unit number stored in the variable IFNUM
C {or a SINTRAN LDN may be used).
CALL OUTCH(IFNUM, ICHAR)
C If not successful, print a File System error message.

C
IF {ERRCODE .NE. 0) CALL ERMSG({ERRCODE)

Scanned by Jonny Oddene for Sintran Data © 2011

338 ND-60.145.8 EN
MONITOR CALLS

WHDEV - MON 140

Check whether or not a logical device is reserved.

C
c

(@]

@]

Check whether or not a logical device is free for output, so
that this program can continue processing.

INTEGER TERMINAL,LOGDEVICE,OUTPUT, FREE
INTEGER RTDESC, WHDEV

Initialize the terminal’'s logical unit and logical device
numbers.

DATA TERMINAL/1/,LOGDEVICE/10/
Initialize parameter values.
DATA OUTPUT/1/,FREE/0O/
Get the device information.
RTDESC=WHDEV (LOGDEVICE,OUTPUT]

Stop if the device is not free for output. Otherwise carry

on.
IF(RTDESC .NE. FREE) THEN
WRITE{TERMINAL,*]) 'Sorry, device already
*reserved'
STOP
ELSE

Use the device.

ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 339
MONITOR CALLS

OUTST — MON 162

Write a string of characters to a peripheral device.

C Write a message to the user's terminal.

INTEGER IMSG,LENGTH,LOGUNIT
CHARACTER*50 MESSAGE

C Equivalence to an integer so the message starts on a word
C boundary.

EQUIVALENCE [IMSG,MESSAGE)
C Initialize the message and its length in bytes.

DATA MESSAGE/'Hello from your friendly program'/
DATA LENGTH/50/

C Initialize the logical unit number for the terminal.
DATA LOGUNIT/1/

C Write the message.
MONSTATUS=0UTST(LOGUNIT,MESSAGE, LENGTH)

C Check that all went well.

IF(MONSTATUS .NE. 0) CALL ERMSG(MONSTATUS)

Scanned by Jonny Oddene for Sintran Data © 2011

340 ND-60.145.8 EN
MONITOR CALILS

c.2.3 DEVICE HANDLING

ECHOM — MON 3

Set the echo strategy for a terminal.

C
C

Set the echo strategy to not echo any characters [(e.g. for
entering a password), then reset the echo strategy.

INTEGER TERMINAL,SUPPRESS,NORMAL

Initialize the terminal logical unit number, and the echo

strategies.

DATA TERMINAL/1/,SUPPRESS/-1/,NORMAL/1/
Set no echo for password processing.

CALL ECHOM(TERMINAL, SUPPRESS)

Get the user password, with appropriate checks.

Reset to echo all characters on the terminal.

CALL ECHOM(TERMINAL,NORMAL)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 341
MONITOR CALLS

BRKM —~ MON 4

Set a specific break strategy for a terminal.

C Set the break strategy so that the user program may examine
C every character as it is typed on the user’'s terminal.

INTEGER TERMINAL,ALLCHARS

C Initialize the terminal's logical unit number.
DATA TERMINAL/1/

C Set the argument value for break on all characters.
DATA ALLCHARS/0/

C Set break on all characters for the user’'s terminal.

CALL BRKM(TERMINAL,ALLCHARS])

Scanned by Jonny Oddene for Sintran Data © 2011

342 ND-60.145.8 EN
MONITOR CALLS
MSG - MON 32
Write a character string to the user's terminal.
C Send a message to the terminal.
CHARACTER*80 MESSAGE

C On the ND-100, the character string must start on a word
boundary. An equivalence with an integer variable will

@]

C accomplish this.

INTEGER 1
EQUIVALENCE (MESSAGE, I)

C Initialize the message text.
DATA MESSAGE/ 'Dear user, have a nice day.'''/
C Send the message.

CALL MSG(MESSAGE)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 343
MONITOR CALLS

ISIZE — MON 66

Get the number of bytes currently in the terminal input buffer, i.e.
those characters which have not yet been read by the user program.

C A terminal is being used for operator input and output of
C messages. Check whether the operator has begun typing something,

C prior to output of a message to the terminal.

INTEGER TERMINAL
INTEGER INCHARS

C Initialize the terminal’'s logical unit number.
DATA TERMINAL/1/
C Check if the operator has begun typing on the terminal.

INCHARS=ISIZE(TERMINAL)
IF(INCHARS .GT. 0) GO TO 10

C If not, output a message to the terminal.

WRITE(TERMINAL, *) 'Dear user, are you still there?’

]

If the operator has begun typing, process his/her input before
C printing the message on the terminal.

10 CONTINUE

Scanned by Jonny Oddene for Sintran Data © 2011

344 ND-60.145.8 EN
MONITOR CALLS

MAGTP — MON 144

This monitor call reads from, writes to, or performs a variety of
control functions for magnetic tape devices. It may also be used with
other devices with similar characteristics to magnetic tape devices,
e.g. Versatec printers/plotters or floppy disks.
C Carry out read and rewind operations on a magnetic tape device.
C Define variables.

INTEGER MAGTP, DATA({100}, LOGUNIT

INTEGER READREC, REWIND

INTEGER STATUS, LENGTH, WORDSREAD, DUMMY

C Initjalize the logical unit number and required functions.

DATA LOGUNIT/32/
DATA READREC/0/, REWIND/13B/

C Read a record, say 50 words.

LENGTH=50
STATUS=MAGTP (READREC,DATA,LOGUNIT,LENGTH, WORDSREAD)

C If all is not well, exit to error processing.
IF(STATUS .NE. 0) GO TO

C Rewind the tape.
STATUS=MAGTP(REWIND,LOGUNIT)

C If all is not well, exit to error processing.

IF(STATUS .NE. 0) GO TO

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 345
MONITOR CALLS

Cc.2.4 RETRIEVING/CHANGING FILE SYSTEM INFORMATION

SMAX — MON 73 and REABT - MON 75

SMAX sets the value of the maximum byte pointer of a file.

REABT reads the byte pointer as it would be used for the next
sequential access of a mass storage file.

C After writing some records to a file, update the maximum byte
C pointer.

INTEGER SMAX,REABT
INTEGER*4 BYTEPOINTER,MAXBYTEPOINTER
INTEGER LOGUNIT
C Initialize the logical unit number.
DATA LOGUNIT/10/
C Open the file.

OPEN(LOGUNIT,FILE='MY-DATA-FILE' ,ACCESS="SPECIAL’,...]

C Write some records containing data to the file.

C Get the value of the byte pointer for the file.
CALL REABT(LOGUNIT,BYTEPOINTER)
C Check that all is well.
IF{ERRCODE .NE. 0) CALL ERMSG(ERRCODE)
C Update the value of the maximum byte pointer for the file.

MAXBYTEPOINTER=BYTEPOINTER-1
CALL SMAX(LOGUNIT,MAXBYTEPOINTER]

C Check that all is well.

IF(ERRCODE .NE. 0] CALL ERMSG(ERRCODE]

Scanned by Jonny Oddene for Sintran Data © 2011

346 ' ND-60.145.8 EN
MONITOR CALLS

SETBS - MON 76

Set the block size of a file to a specific value temporarily (until
the file is closed), which will then be used for random read and write

operations.

In the example below, the FACTOR= specifier of the OPEN statement is
set to 4, which is the default value for operation on the ND-500. This
program can be used on the ND-100 without any changes; but note that
the default value is 2 for the ND~100. The FACTOR= specifier in the
OPEN statement might be set to 1, which means that the monitor calls
RFILE, WFILE, SETBS and MAGTP will use block size in bytes, rather
than using the default word sizes relevant to either machine. Note
that an even number of bytes should be used.

C Set the block size to 4096 bytes. The default block size when
C the file is opened is 512 bytes (256 words on the ND-100]).

INTEGER LOGUNIT, FAC500, TBSBYTES, TBSUNITS
C Initialize the logical unit number.
DATA LOGUNIT/10/
C Initialize the temporary block size in bytes.
DATA TBSBYTES/4096/
C Initialize factor value to the default for the ND-500.
DATA FAC500/4/
C Open the file, use FACTOR= to set the default value for ND-500.
OPEN(LOGUNIT,FACTOR=FAC500,ACCESS="SPECIAL', ...}
C Change from the default block size to 4096 bytes. This block

size will be used until the file is closed, or another SETBS
C call is made.

@]

TBSUNITS=TBSBYTES/FACS500
CALL SETBS(LOGUNIT,TBSUNITS]

C Check that all is well.

IF(ERRCODE .NE. 0) CALL ERMSG(ERRCODE)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 347
MONITOR CALLS

C.2.5 FILE OPERATIONS

RFILE — MON 117 and WFILE - MON 120

Access a file randomly and read or write a specified number of words
to or from a file block.

Read a block of data, 2048 bytes, randomly from one file and
write it randomly to another file. Then read the next record
from the input file. The FACTOR= parameter in the OPEN statement
is set to the default value for the ND-100, i.e. 2 bytes.

e Ne N

INTEGER INUNIT, OUTUNIT, FAC100, READNEXT
INTEGER DATA(1024), LENGTH, BLOCKNUM
INTEGER IOCOMPLETE

C Initialize the logical unit numbers.
DATA INUNIT/10/, OUTUNIT/12/

C Initialize the default value for the ND-100 in OPEN statement.
DATA FAC100/2/

C Set bléck number to “read next block”.
DATA READNEXT/-1/

C Set argument to wait until I/0 operation is complete.
DATA IOCOMPLETE/O/

C Initialize length of the data area for records, in words.
DATA LENGTH/1024/

C Open the files. Use factor= setting for word size on ND-100.

OPEN(INUNIT,...,FACTOR=FAC100,ACCESS="'SPECIAL'...)
OPEN[(OQUTUNIT, ... ,FACTOR=FAC100,ACCESS="SPECIAL'..)

Scanned by Jonny Oddene for Sintran Data © 2011

(@]

348 ND-60.145.8 EN
MONITOR CALLS

Set the block sizes for input and output.

CALL SETBS(INUNIT,LENGTH)
CALL SETBS(OUTUNIT,LENGTH)

Read a block randomly (fifth block) from the input file.

BLOCKNUM=4
CALL RFILE(INUNIT, IOCOMPLETE,DATA,BLOCKNUM, LENGTH)

Check that all is well.
IF(ERRCODE .NE. 0) CALL ERMSG(ERRCODE)
Write the block randomly (second block) to the output file.

BLOCKNUM=1
CALL WFILE(OUTUNIT,IOCOMPLETE,DATA, BLOCKNUM, LENGTH)

Check that all is well.
IF(ERRCODE .NE. 0) CALL ERMSG(ERRCODE)

Now do a "read next block"” operation from the input file i.e.
read the sixth block.

CALL RFILE(INUNIT,IOCOMPLETE,DATA,READNEXT,LENGTH)

Check that all is well.

IF(ERRCODE .NE. 0} CALL ERMSG(ERRCODE)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 349
MONITOR CALLS

RSIO — MON 143

This program will output a message only if the program is in
interactive mode. The monitor call used, RSIO, finds out the execution
mode of the calling program, the user number, and the input and output
file numbers.

C Output a message only if the program is in interactive mode.

INTEGER TERMINAL, INTERACTIVE
INTEGER EXMODE, INDEVICE,OUTDEVICE, INXUSER

C Initialize the logical unit number.
DATA TERMINAL/1/
C Initialize the value for interactive mode.
DATA INTERACTIVE/O/
C Request the execution mode, etc.
CALL RSIO(EXMODE, INDEVICE,QUTDEVICE, INXUSER])
C Output a message if the program is in interactive mode.
IF(EXMODE .EQ. INTERACTIVE) THEN

WRITE(TERMINAL,*) 'Hello there user'
ENDIF

Scanned by Jonny Oddene for Sintran Data © 2011

350 ND-60.145.8 EN
MONITOR CALLS

WAITF — MON 121

Check the state of a mass storage transfer, or whether or not a
transfer initiated by RFILE or WFILE is complete.

C Wait until an I/0 transfer is complete, before continuing
C processing.

INTEGER LOGUNIT, IONOWAIT, IOCOMPLETE
INTEGER IOSTATUS

C Initialize the logical unit number.
DATA LOGUNIT/10/
C Set argument values for desired actions.
DATAIONOWAIT/1/,IOCOMPLETE/O/
C Open the mass storage file.
OPEN(LOGUNIT,ACCESS="'SPECIAL' ,FILE=...)
C Read a record from the file.
CALL RFILE(LOGUNIT, IONOWAIT,...)

C The program can continue processing here.

C Set program in a wait state until I/0 has finished.
IOSTATUS=WAITF(LOGUNIT, IOCOMPLETE)

C Check that all is well.
IF(IOSTATUS .GT. 0) CALL ERMSG(ERRCODE)

C If all is well, then the I/0 transfer has finished.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 351
MONITOR CALLS

C.2.6 ERROR HANDLING

ERMSG — MON 64

Print the File System error message corresponding to the value in the
argument. This is often used to print an error message to explain the
value of ERRCODE which has been set by an earlier monitor call.

C Print the appropriate File System error message.
C Note that an ERRCODE value of zero usually means all is well.

IF(ERRCODE .NE. 0} CALL ERMSG(ERRCODE)

352

ND-60.145.8 EN
MONITOR CALLS

C.3 ND-100 AND ND-500 MONITOR CALLS
— NOTE:
In the following table, "integer" in the column “data type"
means default integer type: integer*2 on the ND-100, and
integer*4 on the ND-500.
Neme |\MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
LEAVE o|s none - no return no
INCH 1|F 1. input unit integer FORTRAN unit number yes
see return value integer see note 1
note 2
OUTCH 2 |F 1. output unit integer FORTRAN unit number yes
see 2. output character |integer right-ad justed
note 2 return value integer see note 1
ECHOM 31 1. device integer SINTRAN LDN no
2. strategy integer
table integer*2 array |8 elements, optional
BRKM 41s 1. device integer SINTRAN LDN no
2. strategy integer
3. table integer*2 array |8 elements, optional
4, number of integer optional
characters
TIME 11 |F return value integer*4 no
SETCM 12 (S 1. command string character see note 4 no
CIBUF 13 |F 1. unit integer FORTRAN unit number yes
return value integer ERRCODE
COBUF 14 |F 1. unit integer FORTRAN unit number yes
return value integer ERRCODE

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
MONITOR CALLS

353

Name |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
MGTTY 16 [F 1. unit integer FORTRAN unit number yes
2. terminal type integer
return value integer ERRCODE
MSTTY 17 |F 1. unit integer FORTRAN unit number yes
2. terminal type integer
return value integer ERRCODE
LASTC 26 |F 1. device integer SINTRAN LDN no
return value integer right-adjusted
RTDSC 27 |F 1. RT desc. address |integer no
2. RT desc. copy integer array 26 elements
return value integer
GETRT 30 |F return value integer no
EXIOX 31 |F 1. register content |integer A-register (ND-100) no
Ii-register (ND-500)
2. dev. register integer
address
return value integer
MSG 32|S. |1. message character see note 4 yes
ALTON 33 1|s 1. page table number |integer must be used with APT |yes
COMMON
ALTOF 34 |S none must be used with APT |no
COMMON
10UT 35 |5 1. radix integer 2, 8, 10 or 16 no
2. value integer see note 6
NOWT 36 |S 1. device integer SINTRAN LDN no
2. 1/0 flag integer
3. wait flag integer
AIRDW 37 |S 1. number of integer =N no
channels
2. channel numbers integer*2 array [N 16-bit elements
read values integer*2 array [N 16-bit elements
4. error flag integer

Scanned by Jonny Oddene for Sintran Data © 2011

354 ND-
Name |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
SPCLO 40 |F 1. unit integer FORTRAN unit number yes
2. text string character see note 4
3. number of copies |integer
4. print flag integer
return value integer ERRCODE
ROBJE 41 |F 1. unit integer FORTRAN unit number yes
2. buffer integer*2 array|32 elements
return value integer ERRCODE
RUSER 44 |F 1. user name character see note 4 yes
2. buffer integer*2 array |32 elements
return value integer ERRCODE
TERMO 52 |s 1. device integer SINTRAN LDN no
2. mode integer
MDLF I 54 |F 1. file name character see note 4 yes
return value integer ERRCODE
PASET 56 |S 1-5 parameters integer no
PAGET 57 1S 1~-5 parameters integer no
RMAX 62 [F 1. unit integer FORTRAN unit number yes
2. number of bytes integer*4
return value integer ERRCODE
ERMSG 64 |F 1. error number integer see note 7 no
QERMS 65 |5 1. error number integer see note 7 no
ISIZE 66 |F 1. unit integer FORTRAN unit number yes
return value integer see note 1

Scanned by Jonny Oddene for Sintran Data © 2011

60.145.8 EN
MONITOR CALLS

ND-60.145.8 EN
MONITOR CALLS

355

Name |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
OSIZE 67 |F 1. unit integer FORTRAN unit number yes
return value integer see note 1
COMND 70 |F 1. command string character see note 4 yes
DESCF 71 |S 1. device integer SINTRAN LDN no
EESCF 72 |S 1. device integer SINTRAN LDN |no
SMAX 73 |F 1. unit integer FORTRAN unit number yes
2. byte count integer*4
return value integer ERRCODE
SETBT 74 |F 1. unit integer FORTRAN unit number yes
2. byte pointer integer*4 ist byte has number 0
return value integer ERRCODE
REABT 75 |F 1. unit integer FORTRAN unit number yes
2. byte pointer integer*4 1st byte has number 0
return value integer ERRCODE
SETBS 76 |F 1. unit integer FORTRAN unit number yes
2. block size integer see note 5
return value integer ERRCODE
SETBL 77 |F 1. unit integer FORTRAN unit number yes
2. block number integer ist block has number 0
return value integer ERRCODE
RT 100 |S 1. RT program external or no
integer
SET 101 (S 1. RT program external or no
integer
2. number of time integer
units
3. basic unit integer

Scanned by Jonny Oddene for Sintran Data © 2011

356 ND-60.145.8 EN
MONITOR CALLS
Name |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
ABSET 102 |S 1. RT program external or no
integer
seconds integer
minutes integer
hours integer
INTV 103 |S 1. RT program external or no
integer
2. number of time integer
units
3. basic unit integer
HOLD 104 |S 1. number of time integer no
units
2. basic units integer
ABORT 105 |S 1. RT program external or no
integer
CONCT 106 |S 1. RT program external or no
integer
2. device integer SINTRAN LDN
DSCNT 107 |S i. RT program external or no
integer
PRIOR 110 |F 1. RT program external or no
integer
2. priority integer
return value integer
UPDAT 111 (S 1-5 time integer no
CLADJ 112 S 1. number of time integer no
units
2. basic units integer
CLOCK 113 (S 1. time integer array 7 elements no
TUSED 114 (F return value integer*4 no
FIX 115 (S 1. segment number integer no

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
MONITOR CALLS

357

Neme |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
WFILE 120 |F 1. unit integer FORTRAN unit number yes
2. return flag integer
3. memory address array any type except char.
4. block number integer
5. length to be integer count in units
written (see note 5)
UNFIX 116 (S 1. segment number integer no
RFILE 117 |F 1. unit integer FORTRAN unit number yes
2. return flag integer
3. memory address array any type except char.
4. block number integer
5. length to be read |integer count in units
{see note 5)
return value integer ERRCODE
WAITF 121 |F 1. unit integer FORTRAN unit number yes
2. return flag integer
return value integer
RESRV 122 |F 1. device integer SINTRAN LDN no
2. 110 flag integer
3. return flag integer
return value integer
RELES 123 (S 1. device integer SINTRAN LDN no
2. 1/0 flag integer
PRSRV 124 |F 1. device integer SINTRAN LDN no
2. 1/0 flag integer
3. RT program external or
integer
return value integer
PRLS 125 |S 1. device integer SINTRAN LDN no
2. 110 flag integer

Scanned by Jonny Oddene for Sintran Data © 2011

358 ND-60.145.8 EN
MONITOR CALLS
Name |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
DSET 126 |S 1. RT program external or no
integer
2. delay integerx4
DABST 127 |S 1. RT program external or no
integer
2. time integer*4
DINTV 130 |S 1. RT program external or no
integer
2. time interval integer*4
ABSTR 1318 1. device integer SINTRAN LDN no
2. function integer
3. memory address integer*4 double integer
4. block address integer
5. number of blocks |integer
MEXIT 133 |8 1. segment number integer right byte only no
see note 3
RTEXT 134 |S none - no return
RTWT 135 |8 none - no
RTON 136 |S 1. RT program external or no
integer
RTOFF 137 (S 1. RT program external or no
integer
WHDEV 140 (F 1. device integer SINTRAN LDN no
2. I/0 flag integer
return value integer

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
MONITOR CALLS

359

Name |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
IOSET 141 |F 1. device integer SINTRAN LDN no
2. 1/0 flag integer
3. RT desc. address |integer
4. control flag integer
return value integer
ERMON 142 (S 1. error number integer Hollerith string no
of two bytes
2. suberror number integer
RSIO 143 |S 1. execution mode integer no
2. input device integer SINTRAN LDN
3. output device integer SINTRAN LDN
4. directory and integer
user index
MAGTP 144 |F 1. function integer yes
2. memory address array any type except char.
3. unit integer FORTRAN unit number
4., parameter 1 integer device dependent
(optional)}
5. parameter 2 integer device dependent
(optional)
return value integer ERRCODE
ACM 145 |F 1. device integer SINTRAN LDN yes
2. function integer
3. memory address array any type except char.
4. destination array any type except char.
5. word count integer number of words
return value integer ERRCODE
CAMAC 147 (S 1. data integer no
2. status integer
3. crate integer
4. station integer
5. subaddress integer
6. function integer
GL 150 |S 1. value integer no
2. crate integer

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
MONITOR CALLS

360
Name |MON |Fun Arquments/return FRRCODE
or set
oct |Sub| Number, purpose Data type Comments
GRTDA 151 |F 1. name Hollerith ends with apostrophe no
return value integer
I0XN 153 |s 1. data integer no
2. 10X code integer
ASSIG 154 |S device integer SINTRAN LDN no
graded LAM integer
crate integer
PLOTT 155 |F 1,2 X,Y co-ordinates |integer no
GRAPHI |C 3. code integer
4. device integer SINTRAN LDN
5. function integer
return value integer
ENTSG 157 |S 1. segment integer no
2. page table integer
3. interrupt level integer
4. entry point integer
FIXC 160 (F 1. segment number integer no
2. page number integer
return value integer
INSTR 161 |F unit integer FORTRAN unit number yes
2. text character starts on a word
boundary
3. length integer length in bytes
4. end character integer right hand byte used
return value integer
OUTST 162 |F 1. unit integer FORTRAN unit number yes
2. text character starts on a word
boundary
3. length integer length in bytes (-1 =
print all characters)
return value integer
WSEG 164 (S 1. segment number integer no

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
MONITOR CALLS

361

Name |MON |Fun Arquments/return ERRCODE
or set
oct |Sub| Number, purpose Data type Comments
DIW 165 |S 1. number of integer =N no
registers
input registers integer*2 array |[N elements
input values integer*2 array [N elements
error value integer
DOLW 166 (S 1. number of integer =N no
registers
2. registers integer*2 array |[N elements
3. output values integer*2 array |N elements
4, masks integer*2 array [N elements
5. error value integer
REENT 167 |S 1. segment number integer see note 3 no
HDLC 201 |F 1. SDCB/RDCB integer yes
2. LDN integer SINTRAN LDN
3. DCB address integer
4. DCB usize integer
5. DCB msize integer
return value integer ERRCODE
EDTRM 206 |S 1. EDFLA integer flag no
2. RTUSF integer
CPUST 262 (F 1. ND number integer always zero yes
2. buffer integer*2 array [system information
return value integer ERRCODE

Scanned by Jonny Oddene for Sintran Data © 2011

362 ' ND-60.145.8 EN
MONITOR CALLS

NOTES :

1)

2)

3)

4)

5)

6)

7)

If there was an error, the function returns the error code
with the sign bit set.

The names of the monitor calls corresponding to these routines
are:

INCH - INBT
OUTCH - OUTBT

Available on the ND-100 only.

Must start on a word boundary (ND-100 only) and end with an
apostrophe.

The unit is defined by the FACTOR=fac specifier of the OPEN
statement. The default is a 2-byte word on the ND-100, and a
4-byte word on the ND-500.

The radixes 2 and 16 are available on the ND-500 only.

The error number can be picked up from ERRCODE without change.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 363

APPENDIX D

LIBRARY UTILIITY FUNCTIONS

ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

LIBRARY UTILITY FUNCTIONS

D.1

TABLE OF LIBRARY UTILITY FUNCTIONS

NOTE

In the following table, “"integer" in the column “data type'

365

means default integer type; integer*2 on the ND-100 and
integer*4 on the ND-500.

Name |Fun Arquments/return
or
Subj| Number, purpose Data type Comments
EXCEPT |S 1. exception number integer
2. function integer
3. user routine integer
4. number of messages integer
5. number of traps integer
6. exception flags logical array
7. lower bound of 6. integer
8. upper bound of 6. integer
EXCDEF |[S 1. exception number integer
2. exception flags logical array
3. lower bound of 2. integer
4. upper bound of 2. integer
EXCTERM (S 1. traceback print integer
2. statistics print integer
3. number of levels integer
4. file number integex
GETMESS |F 1. exception number integer
return value character*30
PRITRAC |S 1. trap logical
PRIMESS |S 1. exception numher integer
RAN F 1. seed value integer*4
return value real*4 real*6, 48-bit f.p.H/W

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

366
LIBRARY UTILIITY FUNCTIONS
Name | Fun Arquments/return
or
Sub| Number, purpose Data type Comments
RDEFVAL |S 1. exception number integer
2. number of messages integer
3. number of exceptions |integer
4. enable flag integer
RCURVAL |S 1. exception number integer
2. user routine integer
3. number of messages integer
4. number of exceptions |integer
5. exception count integer
6. enable flag logical
REXTERM (S 1. traceback print integer current values
2. statistics print integer
3. number of levels integer
4. file number integer
5. traceback print integer default values
6. statistics print integer
7. number of levels integer
8. file number integer

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 367
LIBRARY UTILIITY FUNCTIONS

D.2 LIBRARY SUBPROGRAM DESCRIPTIONS

This section contains a full description of each subprogram
provided in the FORTRAN library, for general utility purposes.
Since the topic of handling errors and exceptions is of a rather
special nature, it is described separately, see Section D.3. All
services provided by the SINTRAN operating system are described in
Appendix C.

b.2.1 THE RAN FUNCTION

The RAN function is for generating random numbers, which are
uniformly distributed in the range between 0.0 inclusive and 1.0
exclusive.

The technique used for generating the random numbers is of the
multiplicative congruential type.

The function returns a REAL*4 value, REAL*6 on a ND-100 with
48-bit floating point hardware.
The function may be invoked repeatedly, as follows:

RLVAR=RAN(INTVAR)

where
RLVAR is assigned the next random number generated.
INTVAR is an INTEGER*4 variable.

To get a series of random numbers, the first invocation of RAN must be made
with the argument, here INTVAR, set to a large odd integer value prior to
this invocation.

The RAN function stores a value in the argument on each invocation. This
value will be used in the next invocation, to compute the next random
number. This value is referred to as the seed.

There are no restrictions on the value which may be used for the seed. It
should be initialized to a different value for successive runs if different
series of random numbers are required. The series of random numbers are
reproducible, if the same value of seed is used.

Scanned by Jonny Oddene for Sintran Data © 2011

368 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

The RAN function uses the following algorithm to compute the value of the
seed to be used for the next invocation:

SEED=69069*SEED+1 (MOD 2" "32)

SEED is a 32-bit number whose high order 24 bits are converted to a
floating-point value to be returned as the function value.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 369
LIBRARY UTILIITY FUNCTIONS

D.3 ND-500 TRAPS AND EXCEPTION HANDLING
ND-100 EXCEPTION HANDLING

The term "exception" covers, in addition to all defined hardware traps,
special situations and errors detected by software. An exception handler is
a routine to be activated when an exception occurs, and which takes take
appropriate recovery actions.

The exception number (16 bits) may be represented as shown below:

15 6 | 5 0

where

bits 15-6 = System software identification (SSI)

bits 50

Specific status code (SC)

and any number fed into the exception handling system will be in
this form.

For FORTRAN, the SSI may contain three different ranges of numbers. For ND-
500 hardware traps the range will be of the form 76xxB, where xx specifies
the trap, see the table in Section D.3.1. The range 04xxB is reserved for
FORTRAN runtime errors, and the range 51xxB is used by the exception
handling system itself. Status codes are numbers allocated to a particular
system. For example, the list of FORTRAN Exceptions given in Section D.3.11,
gives an explanation of numbers in the range 401B: 457B, where 4 is the
FORTRAN SSI. The range prefixed by 777B is not used by ND system software,
and any be freely utilized in user systems.

Scanned by Jonny Oddene for Sintran Data © 2011

370 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

A set of standard routines for exception handling for use with FORTRAN or
PLANC has been developed. These are available in a standard library, and
will be linked automatically if the user so wishes!!!

For each error condition, the user may determine:

e The number of times each error message is to be printed.

e The number of times an error may occur before the program is
abnormally terminated.

e Whether a user-supplied exception handler is to be activated
upon detection of an error.

e Whether traceback of routine stack frames is to be printed
when the error occurs or when the program terminates. (In case
of traps, this includes a register dump.)

e Printout of error statistics when the program terminates.

The library consists of the following routines:

EXCEPT - disable/enable handling of specified
exception
EXCDEF - reset handling of exception to default
EXCTERM - define action to be taken upon program termination
PRITRAC - print traceback of routine instances (subroutines)

PRIMESS - print error message

GETMESS -~ return error text (FORTRAN)

PGETMESS ~ return error text (PLANC)

RDEFVAL - read default exception handling parameters values
RCURVAL - read current exception handling parameters values

REXTERM - reat exception terminating condition

In the following descriptions, the header of these routines is described,
giving the number and types of the arguments. These routines are supplied
with the standard ND FORTRAN library.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 371
LIBRARY UTILIITY FUNCTIONS

e For the ND-500:

Traps and exceptions will be handled in the ND-500, providing they are
locally enabled. There are default settings for all traps. If no local
handling has been specified, or the trap has been disabled, then some traps
may be handled as a system trap in the ND-100. The Monitor will then handle
the trap in a standard manner, depending on the type of trap. System traps
may also be disabled, but the user's right to modify trap handling may be
restricted.

Handling of traps may be determined at load time or before execution through
the commands LOCAL-TRAP-ENABLE, LOCAL-TRAP-DISABLE, SYSTEM-TRAP-ENABLE and
SYSTEM~TRAP-DISABLE. These commands are available both in NLL and the
Monitor, and set the default values to be used if no action is taken by the
program. These commands are described in the ND-500 Loader/Monitor Manual,

ND-60.136.
e For the ND-100:

Exceptions will be handled provided they are locally enabled. There are
default settings for all exceptions.

Scanned by Jonny Oddene for Sintran Data © 2011

372 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

D.3.1 ND-500 TRAPS TABLE

The following is a list of defined hardware traps, their
corresponding bit number in the status, OTE, MTE and TEMM
registers, and the name of the trap. For a more detailed
explanation, see the ND-500 CPU Reference Manual (ND-05.009).

Bit\| Exc.
no.| no, Name Mnemonic|D |msg |err
9 | 7611B | OVERFLOW 0 10 |unl
11 | 7613B | INVALID OPERATION : VO * | 10 |unl
12 | 7614B | DIVISION BY ZERO DZ * | 10 |unl
13 | 7615B | FLOATING UNDERFLOW FU 10 |unl
14 | 7616B | FLOATING OVERFLOW FO * | 10 |unl
15 | 7617B | BCD OVERFLOW BO 10 |unl
16 | 7620B | ILLEGAL OPERAND VALUE IVO * | 10 |unl
17 | 7621B | SINGLE INSTRUCTION TRAP SIT 0 |unl
18 | 7622B | BRANCH TRAP BT 0 |unl
19 | 7623B | CALL TRAP CT 0 |unl
20 | 7624B | BREAKPOINT INSTRUCTION TRAP BPT 0 |unl
21 | 7625B | ADDRESS TRAP FETCH ATF 0 |unl
22 | 7626B | ADDRESS TRAP READ ATR 0 |unl
23 | 7627B | ADDRESS TRAP WRITE ATW 0 |unl
24 | 7630B | ADDRESS ZERO ACCESS AZ 10 |unl
25 | 7631B | DESCRIPTION RANGE DR 10 |unl
26 | 7632B | ILLEGAL INDEX IX * |1 0
27 | 7633B | STACK OVERFLOW STO * |1 0
28 | 7634B | STACK UNDERFLOW STU *1 0] 0
29 | 7635B | PROGRAMMED TRAP PRT * | 10 |unl
30 | 7636B | DISABLE PROCESS SWITCH TIMEOUT| DT * |1 0
31 | 7637B | DISABLE PROCESS SWITCH ERROR | DE * 1| o0
32 | 7640B | INDEX SCALING ERROR XSE x| 1| 0
33 | 7641B | ILLEGAL INSTRUCTION CODE 1IC x| 1] o
34 | 7642B | ILLEGAL OPERAND SPECIFIER 108 x| 1| 0
35 | 7643B | INSTRUCTION SEQUENCE ERROR ISE * 1 0
36 | 7644B | PROTECT VIOLATION PV * 1] 0

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 373
LIBRARY UTILIITY FUNCTIONS

The D column refers to the default enabling of traps used by the standard
exception handler library discussed in the next sections. The * indicates
that the trap is enabled if the default trap library settings are used. msg
= default maximum number of error messages.

default number of exceptions prior to abnormal termination.

"

err

unlimited number

unl
D.3.1.1 ND~-100 SIMULATED TRAPS

In the list of the simulated traps listed below, the D refers to the default
enabling used by the standard exception handler library discussed in the
next sections. * indicates that the exception is enabled if the default
settings are used. For an explanation of msg and err see Section D.3.1.

Exce.

no. Nanme D nsgq err
7614B DIVISION BY ZERO * 10 unl
7633B STACK OVERFLOW * 1 0

D.3.2 THE EXCEPT ROUTINE

The EXCEPT routine is used to modify the current exception handling
conditions.

FORTRAN Specification:

SUBROUTINE EXCEPT (EXCINO, EXCFUN, EXCROUT, NOMSG, NOEXC,
*EXCARR, EXCNOL, EXCNOH)

INTEGER EXCNO, EXCFUN, EXCROUT, NOMSG, NOEXC, EXCNOH, EXCNOL
LOGICAL EXCARR [EXCNOL:EXCNOH)

¢(standard library routine>

END

Scanned by Jonny Oddene for Sintran Data © 2011

374

Parameter values:

ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

EXCNO Exception number or exception number group for
the ND-500:
Exception Number| Meaning
7600B default group of traps to be set (see Section
D.3.1)
5101B LOGICAL array (EXCARR, EXCNOL and EXCNOH must
be present, FORTRAN)
5102B BITS (EXCARR must be present, PLANC)
7611B:7644B specific trap number
400B all FORTRAN errors (see Section D.3.11)
401B:457B specific FORTRAN error
other illegal
For the ND-100:
Exception Number| Meaning
7600B default group of simulated traps to be set
(see Section D.3.1.1)
5101B LOGICAL array (EXCARR, EXCNOL and EXCNOH must
be present, FORTRAN)
5102B BITS (EXCARR must be present, PLANC)
7614B:7633B specific simulated traps
400B all FORTRAN errors (see Section D.3.11)
401B:457B specific FORTRAN error
other illegal

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

375

LIBRARY UTILIITY FUNCTIONS

EXCFUN

Function:

Value of EXCFUN

Meaning

-1

other

disable exception(s) indicated by EXCNO and
ignore all other exceptions. In Addition, the
parameters EXROUT, NOMSG and NOEXC will be
ignored.

enable exception(s) indicated by EXCNO as
TRUE, set new handler/values, and disable all
other exceptions which are indicated as
FALSE. For EXCNO values 7611B:7644B on the
ND-500 (or 7614B:7633B on the ND-100) or
401B:457B, only the single exception thus
specified, is enabled.

enable exception(s), indicated by EXCNO, do
not modify handler/values, and ignore all

other exceptions.

illegal

EXCROUT

User defined exception handler routine:

Value of EXCROUT

Meaning

not O routine address
0 no routine supplied
NOMSG Number of messages allowed before program is

aborted:

Value of NOMSG

Meaning

-1
20
other

any number of messages allowed
number of messages allowed (<2**31-1)
illegal

Scanned by Jonny Oddene for Sintran Data © 2011

376

NOEXC

ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

Number of traps before program is aborted:

Value of NOEXC Meaning

-1 any number of exceptions allowed
20 number of exceptions allowed (<2**31-1)
other illegal
EXCARR LOGICAL array (FORTRAN) or BITS(PLANC)
containing .TRUE. and .FALSE. for exceptions to
be handled
EXCNOL {FORTRAN) Low limit of EXCARR
EXCNOH (FORTRAN) High limit of EXCARR

The handling of one or several exception conditions may be modi-
fied, selected through the EXCNO parameter. If this parameter is
5101B (FORTRAN) or 5102B (PLANC), the EXCARR parameter selects a
set of exceptions to be handled. If the EXCFUN parameter is zero
and EXCARR is present, the elements set to .TRUE. in this array
will cause the corresponding exception to be enabled, while
.FALSE. will cause it to be disabled. The array EXCARR must be de-—
clared as EXCARR (EXCARREXCNOH). For example, EXCARR(7611B:7644B)
on the ND-500 or EXCARR (7614B:7633B) on the ND-100.

The EXCROUT parameter specifies the name of a user supplied
routine to be executed when the exception occurs. The routine
should conform to the following formal specification:

e In FORTRAN:

SUBROUTINE name (ierno)
INTEGER ierno

{user written exception handler>

END

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 377
LIBRARY UTILIITY FUNCTIONS

The parameter iermo will transfer the error number to the exception handler.
If the EXCROUT parameter is zero, the standard exception handler routine
from the library is used.

After an error has occured, the sequence of operations is as follows; the
steps marked with an asterisk apply to traps on the ND-500 only:

-NOTE: the details are slightly different in PLANC.
1) If the exceptiion is a trap, the trap routine is activated.
2} A system provided exception handler is called.

3) This handler updates the occurrence counter for this type of
exception and activates the user exception handler if one has
been specified.

4) If the traceback condition (see note 1) is true, the system
outputs:

- register dump
- traceback printout

5) If the message occurrence limit (NOMSG) has not been exceeded,
or if the traceback condition (see note 1) is true, an error
message is printed.

6) If the error count is less than or equal to the allowed number
of occurrences for this exception type, control is returned to
normal FORTRAN error handling.

otherwise, the program is abnormally terminated with error
statistics, if specified.

If the exception occurs during the execution of FORTRAN I/0
statements (regardless of the type exception, SINTRAN, FORTRAN
1/0, trigonometric error (430B:457B), or trap on the ND-500), the
exception handler must not perform FORTRAN I/0. That is READ,
WRITE, PRINT, OPEN, CLOSE, BACKSPACE, ENDFILE, or REWIND. Monitor
Calls, however, may be called directly. Otherwise, FORTRAN I/0 may
be used, provided no new error situations are generated.

378 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

—— NOTE

In FORTRAN, on the ND-500, the STACK UNDERFLOW trap
condition is handled by special software mechanisms and must,
in order to ensure correct termination of the I/0 activities,
always be default enabled.

—— N OTE

The traceback condition is evaluated by the following
expression:

thiserror><’' STACK UNDERFLOW' and
{ (TRACEBACK=2 and
{ thiserror.NOMSG=unl or
thiserror.numerrors in O : thiserror.NOMSG])
or
(TRACEBACK2 1 and
{thiserror.NOEXC><UNL and
NOT thiserror.numerrors in O : thiserror.NOEXC))})

where
thiserror.numerrors is the current value of the
number of exceptions of this type which have occurred.

EXAMPLES — FORTRAN

° Enable DIVISION BY ZERO detection using current exception
values:

C DIVISION BY ZERO is trap number 12 on the ND-500
CALL EXCEPT (7614B,1,0,0,0)

e For the ND-500 only: Enable OVERFLOW and allow a maximum of 2
error messages and 10 overflow errors before abnormal
termination. Activate the user defined routine MYROUT each
time the overflow trap occurs.

CALL EXCEPT (7611B,0,MYROUT,2,10)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 379
LIBRARY UTILIITY FUNCTIONS

° Disable error handling for exponential functions, FORTRAN
error numbers 431B, 432B, 433B, 437B.

LOGICAL ERRARRAY (431B:437B)

DATA ERRARRAY/.FALSE.,.FALSE.,.FALSE.,.TRUE.,

* .TRUE., .TRUE., .FALSE./

CALL EXCEPT (5101B,-1,0,0,0,ERRARRAY,431B,437B)

o Manipulation of some exception settings. Assume the following
are the current table settings for exceptions:

Exc.no. EXCROUT nsg err Setting

foctal) setting
431 A 10 unl enabled
432 A 10 unl enabled
433 A 10 unl enabled
434 0 10 20 disabled
435 0 10 unl enabled
436 0 10 unl disabled
437 0] 10 50 enabled

If the following call were executed,

CALL EXCEPT (5101B,0,MYROUT,5,-1,ERRARRAY,431B,437B)
C ERRARRAY as declared in the previous example

then the table settings would be changed as follows:

Exc.no. EXCROUT nsg err Setting

foctal) setting
431 A 10 unl disabled
432 A 10 unl disabled
433 A 10 unl disabled
434 MYROUT 5 unl enabled
435 MYROUT 5 unl enabled
436 MYROUT 5 unl enabled -
437 0] 10 50 disabled

Scanned by Jonny Oddene for Sintran Data © 2011

380 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

D.3.3 THE EXCDEF ROUTINE

EXCDEF is used to set the default exception handling values for a given set
of exceptions. This is functionally equivalent to calling EXCEPT with the
default parameter values for each of the exceptions specified, but is more
convenient and relieves the programmer from knowing the defaults.

FORTRAN Specification:

SUBROUTINE EXCDEF (EXCNO, EXCARR, EXCNOL, EXCNOH)
INTEGER EXCNO, EXCNOL, EXCNOH

LOGICAL EXCARR [EXCNOL:EXCNOH)

¢standard library routine>

END

Parameter values:

EXCNO Exception number or exception number group for
the ND-500:

Value of EXCNO Meaning

7600B default setting (see Section D.3.1)

5101B LOGICAL array (EXCARR, EXCNOL and EXCNOH
present, FORTRAN)

5102B BITS (EXCARR present PLANC)

7611B:7644B default setting for specific trap number (see
Section D.3.1)

400B all FORTRAN errors

401B:457B specific FORTRAN error

other illegal

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

For the ND-100:

381

Value of EXCNO

Meaning

7600B
5101B

5102B
7614B:7633B

default setting (see Section D.3.1)

LOGICAL array (EXCARR, EXCNOL and EXCNOH
present, FORTRAN)

BITS (EXCARR present, PLANC)

default setting for specific simulated traps
(see Section D.3.1)

400B all FORTRAN errors
401B:457B specific FORTRAN error
other illegal
EXCARR LOGICAL array (FORTRAN) or BITS (PLANC)
containing .TRUE. for exceptions to be handled,
.FALSE. for those that should remain as they are
EXCROL (FORTRAN) Low limit of EXCARR
EXCROH (FORTRAN) High limit of EXCARR

The EXCARR parameter selects a set of exception conditions, like
in the EXCEPT routine. Alternatively, one specific exception may
be selected through the EXCNO parameter.

EXAMPLES — FORTRAN:

® Reset handling of all traps and FORTRAN errors to default:

C All traps {on ND-500), all simulated traps (ND-100)

C

eNeNe]

c

CALL EXCDEF (7600B)

All fortran errors

CALL EXCDEF (400B)

C Set default program termination conditions

C

CALL EXCTERM (0, 1, 20, 0);

on the ND-500

CALL EXCTERM (0, O, 20, 0); % on the ND-100

Scanned by Jonny Oddene for Sintran Data © 2011

382 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

This setting is identical to the setting at the beginning of
execution of a FORTRAN program.

e Reset special error handling for exponential functions, error
numbers 431B, 432B, 433B and 437B, but keep possible handling of
other exceptions:

LOGICAL ERRARRAY (431B:437B)

DATA ERRARRAY/.TRUE.,.TRUE.,.TRUE.,FALSE.,
* _FALSE., .FALSE.,.TRUE./

CALL EXCDEF (5101B,ERRARRAY,431B,437B)

D.3.4 THE EXCTERM ROUTINE

EXCTERM may be called to determine how the printing of traceback and error
statistics information is done. If it has been called more than once, the
last call applies at program termination.

FORTRAN Specification:

SUBROUTINE EXCTERM (TRACEBACK,PRSTAT,NOLEV,FNUMB)
INTEGER TRACEBACK,PRSTAT,NOLEV, FNUMB

<standard library routine>

END

Parameter value:

TRACEBACK traceback print, for all errors:

Value of TRACEBACK| Meaning

0 no traceback (default)

1 traceback upon abnormal termination
2 traceback upon error

other illegal

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 383
LIBRARY UTILIITY FUNCTIONS

PRSTAT error statistics print upon end of program, for
all errors:

Value of PRSTAT | Meaning

0 no statistics output (default, ND-100)
1 print statistics (default, ND-500)
other illegal

NOLEV maximum number of levels to process when a

traceback is provided:

Value of NOLEV| Meaning

>0 maximum no. of stack levels to print, default 20
other illegal
FNUMB

Value of FNUMB| Meaning

1-127 file number of an open file where all errors in
information printout is to be directed (except

MON64 type output). The file must be open with

access type W.

0 reset to terminal (1) output {(default)

other illegal

Note the difference between a file with number 1 and terminal 1.

Scanned by Jonny Oddene for Sintran Data © 2011

384 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

D.3.5 THE PRITRAC ROUTINE

PRITRAC is a utility routine to print a traceback of routine instances
(stack frames) after an exception. The routine is called from a user
handler, or automatically upon abnormal termination of the job if traceback
has been selected (in the EXCEPT call referring to the exception condition
raised).

FORTRAN Specification:

SUBROUTINE PRITRAC (TRAP)
LOGICAL TRAP

¢(standard library routine>
END

Parameter value(which is ignored in the ND-100 version):

TRAP .TRUE. if called while a trap is being handled.
.FALSE. should be set for any other condition.

Note that the default maximum number of stack levels to be printed is 20.

D.3.6 THE PRIMESS ROUTINE

The PRIMESS routine will print the error message, corresponding to the
parameter value, on the standard output device (unit 1).

FORTRAN Specification:

SUBROUTINE PRIMESS (EXCNO]
INTEGER EXCNO

<standard library routine>
END

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 385
LIBRARY UTILIITY FURCTIONS

Parameter values:

EXCNO Exception number {for the ND-500)

The parameter (EXCNO) must be in the range 7611B:7644B (traps) or 401B:457B
(FORTRAN errors).

Exception number (for the ND-100)

The parameter (EXCNO) must be in the range 7614B:7633B (simulated traps) or
401B:457B (FORTRAN errors).

D.3.7 THE GETMESS/PGETMESS ROUTINE

GETMESS/PGETMESS will return the error text corresponding to the specified
exception number.

FORTRAN Specification:

FUNCTION GETMESS (EXCNO}
C This function must be declared to be of type character in the
C calling program

INTEGER EXCNO

CHARACTER*50 GETMESS

(standard library routine>

END

Parameter values:

EXCNO The number of an exception condition (for the
ND-500)

EXCNO must (for the ND-500) be the number of a defined exception condition,
in the range 7611B:7644B (traps) or 401B:457B (FORTRAN error).

EXCNO must {for the ND-100) be the number of a defined exception condition,
in the range 7614B:7633B (simulated trap) or 401B:457B (FORTRAN error).

Scanned by Jonny Oddene for Sintran Data © 2011

386 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

D.3.8 THE RDEFVAL ROUTINE

RDEFVAL may be called to read the default values of the exception parameters
corresponding to a given exception number (EXCNO).

FORTRAN Specification:

SUBROUTINE RDEFVAL (EXCNO, NOMSG, NOEXC, ENABL)
INTEGER EXCNO, NOMSG, NOEXC,

LOGICAL ENABL

¢(standard library routine>

END

Parameter values:

EXCNO Exception number

NOMSG Default number of messages allowed

NOEXC Default number of exceptions allowed

ENABL Logical parameter .TRUE. if exception is enabled as
default.

D.3.9 THE RCURVAL ROUTINE

RCURVAL may be called to read the current values of the exception parameters
corresponding to a given exception number (EXCNO).

FORTRAN Specification:

SUBROUTINE RCURVAL (EXCNO, EXCROUT, NOMSG, NOEXC,EXCCOUNT,

*ENABL)
INTEGER EXCNO, EXCROUT, NOMSG, NOEXC, EXCCOUT

LOGICAL ENABL
(standard library routine>
END

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 387
LIBRARY UTILIITY FUNCTIONS

Parameter values:

EXCRO Exception number

EXCROUT Address of current user exception handler or zero

NOMSG Current number of messages allowed before termi-
nation

NOEXC Current number of exceptions allowed before termi-
nation

EXCCOUNT Current exception count

ENRABL Logical parameter .TRUE. if exception is enabled at
the moment

D.3.10 THE REXTERM ROUTINE

REXTERM is used to read the exception terminating condition.

FORTRAN Specification:

SUBROUTINE EXCTERM (TRACEBACK, PRSTAT, NOLEV,FNUMB,

* DTRACEBACK, OPRSTAT, DNOLEV, DFNUMB)
INTEGER TRACEBACK, TRSTAT, NOLEV, FNUMB,DTRACEBACK, DPRSTAT,
*DNOLEV, DFNUMB

<standard library routine>
END

The first parameters will read the current value of the variables
represented by the parameters in the EXCTERM routine. The last four read the
default values of the corresponding variables. See the EXCTERM routine for
the parameter descriptions.

Scanned by Jonny Oddene for Sintran Data © 2011

388 ND-60.145.8 EN
LIBRARY UTILIITY FUNCTIONS

D.3.11 FORTRAN EXCEPTIONS

Dec |Oct| Name msg| err
257 (401 | FATAL FORMATTING SYSTEM ERROR 1 0
258 [402| TOO LOW PARENTHESES LEVEL IN FORMAT 1 0
259 |403| ILLEGAL CHARACTER IN FORMAT 1 0
260 |404| ILLEGAL TERMINATION OF FORMAT 1 0
261 |405| OUTPUT RECORD SIZE EXCEEDED 10 | unl
262 |406| FORMAT REQUIRES GREATER INPUT RECORD | 10 | unl
263 |407(INTEGER OVERFLOW ON INPUT 10 | unl
264 |410| INPUT RECORD SIZE EXCEEDED - 10 | unl
265 |411| BACKSPACE ILLEGAL 10 | unl
266 |412| BAD CHARACTER ON INPUT 10 | unl
267 |413| REAL OVERFLOW ON INPUT 10 | unl
268 |414| REAL UNDERFLOW ON INPUT 10 | unl
269 |415| STRING DOES NOT START ON A WORD

BOUNDARY 10 | unl
270 |416| REAL OVERFLOW ON OUTPUT 10 | unl
271 |417| FORMAT SPECIFICATION DOES NOT APPLY 1 0
272 |420| OVERFLOW IN EXPONENT ON INPUT 10 | unl
273 |421| WRONG NUMBER OF PARAMETERS IN CALL 1 0
274 |422| TOO MANY FILES OPENED 1 0 ND-100

only
276 [424| MIXING OF BINARY/ASCII ILLEGAL 1 0
277 |425| NO MORE BUFFERS AVAILABLE 1 0
278 |426| NON-FATAL ERROR (CHARACTER) 10 | unl ND-500
only

279, [427| FATAL ERROR (I/0) 1 0
280" |430| I/0 ERROR WITHOUT SPECIAL HANDLING 0 0
281 |431| ZERO BASE AND NEGATIVE EXPONENT 10 | unl
282 |432| BASE LESS THAN ZERO IN EXPONENTIATION| 10 | unl
283 |433| OVERFLOW IN EXPONENTIATION 10 | unl
284 [434| NEG. ARG. IN SQUARE ROOT 10 | unl
285 |435| TOO LARGE ARG. IN SINE 10 | unl
286 |436| TOO LARGE ARG. IN COSINE 10 | unl
287 [437| TOO LARGE ARG. IN EXP-FUNCTION 10 | unl
288 |440| ZERO OR NEG. ARG. IN LOGARITHM 10 | unl
289 |441| BOTH ARGS. ZERO IN ARC-TAN 10 | unl
294 |446| TOO LARGE ARG. IN HYPERB. SINE 10 | unl
295 |447| TOO LARGE ARG. IN HYPERB.COSINE 10 | unl
296 |450| TOO LARGE ARG. IN COMPLEX ABS OR

SQUARE ROOT 10 | unl
302 [456| ILLEGAL ARG. IN ARC-SINE/COSINE 10 | unl
303 [457| ILLEGAL ARG. IN TAN 10 | unl

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 389
LIBRARY UTILIITY FUNCTIONS

* = must be enabled
msg = default maximum number of error messages

default number of exceptions prior to abnormal
termination

err

unl unlimited numbe

Numbers not listed are currently not used. All FORTRAN errors except 430B
are default enabled.

All languages:

The hardware traps are listed in Section D.3.1.

Scanned by Jonny Oddene for Sintran Data © 2011

390 ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 391

APPENDIX E

STORAGE MAPPING

ND-60.145.8 EN
STORAGE MAPPING

STORAGE MAPPING

ND FORTRAN data types are stored in the following way:

LOGICAL*1
0
7
Bits 7-1 : set to O
Bit 0O(V) : 0 = .FALSE.
1 = .TRUE.
LOGICAL*2
0
15
Bits 15-1 : set to O
Bit 0(V) : 0 = .FALSE.
1 = .TRUE.

Scanned by Jonny Oddene for Sintran Data © 2011

393

394
LOGICAL*4
0 o |V
31 1 0
Bits 31-1 : set to O
Bit 0(V) : 0 = .FALSE.
1 = .TRUE.
INTEGER*1
S value
7 6 0
Bit 7 : 0 = greater than or equal to zero
1l = negative
Bits 6-0 : value held in twos-complement form.
INTEGER*2
S value
15 14 0
Bit 15 : 0 = greater than or equal to zero
1 = negative
Bits 14-0 : value held in twos-complement form.

ND-60.145.8 EN
STORAGE MAPPING

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 395
STORAGE MAPPING

INTEGER*4
S value
31 30 0
Bit 31 : 0 = greater than or equal to zero
1 = negative
Bits 30-0 : value held in twos-complement form.

REAL*4 (ND-500 or NORD-10/ND-100 with 32-bit floating-
point hardware option.)

S Exponent mantissa
31 30 22 21 0
Bit 31 : 0 = greater than or equal to zero
1 = negative

Bits 30-22 : Binary exponent
Stored with a bias of 256 (400 octal). This is the
power of 2 that the mantissa must be multiplied by.
A value of 256 means that the mantissa is the value.
If the exponent is 0, the whole value is zero.

Bits 21-0 : Mantissa
Stored without the 0.5 (0.1 binary) excess,
unless the value is zero. The binary point is one
place to the left of the mantissa. The mantissa is
normalised so that 0.5 ¢ mantissa < 1.0

Scanned by Jonny Oddene for Sintran Data © 2011

396 ND-60.145.8 EN
STORAGE MAPPING

REAL*6 (NORD-10/ND-100 with 48-bit floating-point hardware option)

S Exponent mantissa
47 46 32 31 0
Bit 47 : 0 = greater than or equal to zero
1 = negative

Bits 46-32 : Binary exponent. Stored with a bias of 40000 octal.
Zero exponent means that the whole value is zero.

Bits 31-0 : Mantissa.

Stored with all bits included. Binary point is
immediately to the left of bit 31.

REAL*8 (all machines)

S Exponent mantissa
63 €2 54 53 0
Bit 63 : 0 = greater than or equal to zero
1 = negative

Bits 62-54 : Binary exponent
Stored with a bias of 256 (= 400 octal). A zero
exponent means the whole value is zero.

Bits 53-0 : Mantissa.
Stored without the 0.5 (= 0.1 binary) excess unless
the value is zero. The mantissa is normalised so the
0.5 € mantissa < 1.0. The binary point is one place
to the left of bit 53.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 397
STORAGE MAPPING

COMPLEX*8

2 consecutive REAL*4 values.

COMPLEX*12

2 consecutive REAL*6 values.

COMPLEX*16

2 consecutive REAL*8 values.

CHARACTER*R

N consecutive bytes.
A character is addressed via a descriptor.

On the ND-500, the descriptor is 2 words:

length

address of the first character in string

31 0

Scanned by Jonny Oddene for Sintran Data © 2011

398 ND-60.145.8 EN
STORAGE MAPPING

On the NORD-10/ND-100, the descriptor is 2 words:

address of the first word

C unused length

15 14 11 10 0

If C (bit 15 of 2nd. word) = 0, the string starts in the high-
order byte of the first word; if 1, it starts in the low-order

byte.

The following tables give the size in BYTES of each data type for
the various machines.)

NUMERIC (fw,sc)

Only ND-500:

(fw / 2) +1 consecutive bytes

A packed decimal operand is addressed via a descriptor. The
descriptor takes two words:

31 16 15 0

sc fw

address of first byte

ND-60.145.8 EN 399
STORAGE MAPPING

TABLE 1

NORD-10 OR ND-100 WITH 48-BIT FLOATING-POINT HARDWARE

Data Type Length in Bytes Alignment (Note 1)
CHARACTER*1 (Note 2) 1 Byte
LOGICAL (Note 3) 2 Word
LOGICAL*2 2 Word
LOGICAL*4 4 Word
INTEGER (Note 3) 2 Word
INTEGER*2 2 Word
INTEGER*4 4 Word
DOUBLE INTEGER 4 Word
REAL (Note 3) 6 Word
REAL*4 (Note 4) 6 Word
REAL*6 (Note 4) 6 Word
REAL*8 8 Word
DOUBLE PRECISION (Note 5) 8 Word
COMPLEX 12 Word
COMPLEX*8 (Note 4) 12 Word
COMPLEX*12 (Note 4) 12 Word
COMPLEX*16 {Note 5) 16 Word
DOUBLE COMPLEX (Note 5) 16 Word

TABLE 2
NORD-10 OR ND-100 WITH 32-BIT FLOATING-POINT HARDWARE

The CHARACTER, LOGICAL, and INTEGER types are as for the 48-bit
table above. The other data types are listed below.

Data Type Length in Bytes Alignment (Note 1)
REAL (Note 3) 4 Word
REAL*4 (Note 4) 4 Word
REAL*6 {Note 4) 4 Word
REAL*8 {Note 5) 8 Word
DOUBLE PRECISION (Note 5) 8 Word

Scanned by Jonny Oddene for Sintran Data © 2011

400 ND-60.145.8 EN
STORAGE MAPPING

TABLE 3
ND-500

Data Type Length in Bytes Alignment (Note 1)
CHARACTER*1 (Note 2) 1 Byte
LOGICAL (Note 3) 4 Word
LOGICAL*1 1 Byte
LOGICAL*2 2 Half-Word
LOGICAL*4 4 Word
INTEGER (Note 3) 4 Word
INTEGER*1 1 Byte
INTEGER*2 2 Half-Word
INTEGER*4 4 Word
DOUBLE INTEGER 4 Word
REAL (Note 3) 4 Word
REAL*4 (Note 4) 4 Word
REAL*6 (Note 4) 4 Word
REAL*8 (Note 5) 8 Word
DOUBLE PRECISION (Note 5) 8 Word
COMPLEX 8 Word
COMPLEX*8 (Note 4) 8 Word
COMPLEX*12 (Note 4) 8 Word
COMPLEX*16 (Note 5) 16 Word
DOUBLE COMPLEX (Note 5) 16 Word
NUMERIC (fw,sc) (fw/2)+1 Byte

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 401
STORAGE MAPPING

NOTES

1. For the NORD-10 and ND-100, a word is 16 bits = 2 bytes. For
the ND-500, a word is 32 bits = 4 bytes.

2. For CHARACTER strings of length N, the length is N bytes.

3. These are default values. The meaning of these attributes can
be modified by the DEFAULT command.

4. REAL*6 and REAL*4 both mean single precision irrespective of
the machine the program is executed on. The alternatives are
provided for completeness and comments since the 48-bit format
uses 6 bytes for a REAL value. Similar remarks apply to
COMPLEX*8 and COMPLEX*12.

5. The DOUBLE PRECISION forms are identical on all machines. For
the NORD-10 and ND-100, the implementation uses software
routines and is relatively slow.

COMMON MAPPING

To allocate addresses within a common block, the following '
algorithm is used:

1. Place the first variable on a word boundary.

2. Place each subsequent variable on the first available
alignment boundary at, or fcllowing the end of the previous
variable.

It is the user's responsibility to ensure that the COMMON blocks
are correctly defined. Particular care should be taken over the

COMMON blocks shared between unlike processors (i.e., ND-100 and
ND-500) .

Scanned by Jonny Oddene for Sintran Data © 2011

402 ND-60.145.8 EN
STORAGE MAPPING

RESTRICTION

ANSI FORTRAN 77 implies that an INTEGER and a REAL data item
occupy the same amount of storage. For the ND-500 and the ND-100
with 32-bit floating-point hardware with DEFAULT INTEGER*4
specified, this condition is met.

However, for the ND-100 with 48-bit floating-point, hardware
programs cannot be accepted as ANSI FORTRAN 77 standard, if
equivalent storage occupation for INTEGER and REAL is required by
either different COMMON definitions or by EQUIVALENCE statements.

CODE AND DATA SIZES

At the end of a compilation, the compiler indicates the total
storage requirements of all the program units compiled by the last
COMPILE command.

All the numbers given are in decimal, representing for the ND-100
the number of words, and for the ND-500, the number of bytes.

The values given are:

1) PROG SIZE is the size of the program code. On the ND-100 in
single-bank operation (i.e., SEPARATE-DATA OFF), this figure
also includes the data areas of the program, since they are
not separated.

2) DATA SIZE is the size of the data areas used by the program,
but excluding any COMMON blocks. This size is placed in the
data bank in ND-500 programs and if SEPARATE-DATA ON is used
in ND-100 programs. (The figure is omitted when using
SEPARATE-DATA OFF in ND-100 programs.)

3) COMMON SIZE is the total of all the maximum sizes of the
COMMON blocks found in the last compilation. It is placed in
the data bank where applicable, or at the high address if
SEPARATE-DATA OFF is used. (See the NRL and RT-Loader manuals
for alternative methods of placing COMMON.)

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 403
STORAGE MAPPING

4) STACK SIZE is the sum of all the local storage requirements of
all the units compiled in the last COMPILE command. These
areas are obtained dynamically on entry to each program unit,
and released on exit. If only one unit was compiled, it
accurately reflects that unit's stack requirement (but not the
routines it calls). The actual stack size should include
enough for the longest nest of CALL's or function references,
including library calls. The fiqure is omitted on the ND-100
with REENTRANT OFF, since there is no stack in this case.

Note that if LIBRARY-MODE is ON, these figures represent the total
if all units are incorporated in a program. If only a selection is
used, the figures are accordingly reduced.

Scanned by Jonny Oddene for Sintran Data © 2011

404 ND-60.145.8 EN

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 405

APPENDIX F

INTERFACES TO OTHER LANGUAGE PROGRAMS

ND-60.145.8 EN 407
INTERFACES TO OTHER LANGUAGE PROGRAMS

INTERFACES TO OTHER LANGUAGE PROGRAMS

ND FORTRAN has a standard calling sequence for its subroutine and
function invocations. This will make it easier to interface programs
and subprograms written in other languages with those written in
FORTRAN. This interface is described in detail first, followed by
examples showing how to use it to interface to other languages on both
the ND-100 and ND-500.

F.1 FORTRAN INTERFACES ON THE ND-100

Each FORTRAN subprogram holds its local variables in a local data
area. If a program, comprising a number of subprograms, is compiled as
non-reentrant, then each local data area will be in a separate stack
for each subprogram. If such a program is compiled as reentrant, then
the local data area for each subprogram will be dynamically allocated
from a single stack. The B-register must always address the
appropriate stack element during execution of a FORTRAN subprogram.

Scanned by Jonny Oddene for Sintran Data © 2011

408 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

OFFSET FROM THE CONTENT
B-REG (OCTAL) IN

BYTES
-200 LINK -link register, address for normal return
-177 PREVEB -previous B-register, reloaded on exit
— -176 FREFES -points to the free area of stack which
immediately follows this stack element
-175 EOS -points to the word immediately following
-174 SYS -run time system use

-173 ERRCODE| -ERRCODE (value)

-172 stack -first parameter address if any
element
> free ~free area of the stack
area
——— FIO use| -one word, FORTRAN I1/0 use
buffers| -one word, number of buffers
exc ptr| -one word, exception handler pointer

In FORTRAN, there are always three words following the stack. If the
FORTRAN I/0 system is to be used, and the program is non-reentrant,
these should be initialized. The first word points to a special
FORTRAN I/0 area whose name is S5FIO-BL, and the second word should be
zero. The third word, which is used by the EXCEPTION HANDLER, is
called SEXCINF. If the program is reentrant, these 3 words are
initialized at run time, to zero, on entry to the FORTRAN main
program.

The free area following the current stack element should always be

large enough to contain the work areas for the FORTRAN run time
routines (except the I/O routines in non-reentrant execution).

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 409
INTERFACES TO OTHER LANGUAGE PROGRAMS

When FORTRAN calls an EXTERNAL entry point, the registers are used
as follows:

= return address

= current stack element; must be restored on return

number of parameters

= parameter list address

O » B W
]

= address of descriptor for the return value if the
call is to a function which returns a character string

unused

>
I

P = entry point of called routine

On return from a function, the value of the function is returned
as follows:

LOGICAL*2, INTEGER*2 A-register

LOGICAL*4, INTEGER*4 AD-register

REAL*4 AD-register

(32-bit floating-point hardware)

REAL*6 TAD-register

(48-bit floating-point hardware)

REAL*8, COMPLEX, COMPLEX*16 A-register points to the
result

CHARACTER result resides in storage

described by descriptor which
D-reqg pointed at on entry

For character functions, a memory area of the required size has
been allocated by the calling routine before invoking of the
function, and the D-register points to a descriptor upon entry to
the function.

Reentrant FORTRAN routines assume that the parameter addresses are
already in position (-172B from the B-register and onwards) at
entry to the routine. It is the responsibility of the calling
routine to place them there. From the calling viewpoint, they lie
at +6 from the free area and onwards. Thus the addresses are not
copied.

Scanned by Jonny Oddene for Sintran Data © 2011

410 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

If a subroutine has alternate returns specified in its dummy argument
list, these are not included irn the parameter list. Instead, the
alternate return value (0 for normal return) is set in the ERRCODE
position in the caller's stack element. This value may then be used in
a COMPUTED GO TO after return has been made to the caller.

The parameter list consists of a sequence of words, one for each dummy
argument. For arithmetic variables or expressions and logical
variables or expressions, the corresponding word contains the address
of the variable. For arrays of arithmetic or logical types, the word
contains the address of the first element of the array.

For character variables or expressions, the word contains the address
of a descriptor consisting of two words.

word 1 address of word containing first character

word 2 15 10 length in bytes 0O

Bit 15 of word two is O if the string starts in the left-hand (high-
order) byte of the word, and is 1 if it starts in the right-hand byte.

Bits 14 - 11 are used by the commercial instruction set and should
normally be zero.

For character arrays, the parameter word contains the address of a
descriptor for the first element of the array (i.e., one whose address
part is for the start of the array, and whose length is that of a
single element of the array).

For two-bank programs, all parameter values and their descriptors, if
character, must be in the data bank.

The ASSEMBLY statement modifies the calling sequence to EXTERNAL

program units. It can be used where the external routine is written in
MAC, NPL; or PLANC with the SPECIAL option.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 411
INTERFACES TO OTHER LANGUAGE PROGRAMS

The calling sequence is modified as follows:

e Only integer parameters or array names may occur in direct
calls.

e The arguments are passed in registers. Integers values are
contained in the register; array names are passed as the address
of their first word. The arguments 1 to 4 are in T, A, D, and
X-registers respectively. It is not possible to modify the
FORTRAN arguments in the called routine, unless they are arrays.

e The return address is one word beyond the contents of the L-
register at entry to the routine.

Note that functions returning DOUBLE PRECISION and COMPLEX values do
so in a manner incompatible with the 2090 series of FORTRAN compilers.

Scanned by Jonny Oddene for Sintran Data © 2011

412 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

F.2 FORTRAN INTEFACES ON THE ND-500

Each FORTRAN subprogram holds its local variables in a local data
area. A program, comprising a number of subprograms, will result in
each local data area being in a separate stack for each subprogram.
The B-register must always address the appropriate stack element
during execution of a FORTRAN subprogram.

OFFSET FROM THE CONTENT
B-REG (OCTAL) IN

BYTES
(0] PREVB -previous B-register, reloaded on exit
4 RETA -link register,address for normal return
10 FREES -points to the free area of stack which
immediately follows this stack element
14 ERRCODE| -ERRCODE value
20 stack ~ first parameter address if any
element
Lo free - free area of the stack
area

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 413
INTERFACES TO OTHER LANGUAGE PROGRAMS

On return from a function, the value of the function is as follows:

LOGICAL*]1, LOGICAL*2, INTEGER*1, Il-register INTEGER*2,LOGICAL*4,
INTEGER*4

REAL*4, (32-bit floating-point) Al~register

REAL*8, (48-bit floating-point) Dl-register

COMPLEX*8 Al-register,

A2-register

COMPLEX*16 Dl~register,
D2~register

CHARACTER, NUMERIC (fw,sc) result resides in storage
described by descriptor which
R-reg pointed at on entry.

For character functions, a memory area of the required size has been
allocated by the calling routine before invocation of the function,
and the R-register points to a descriptor upon entry to the function.

If a subroutine has alternate returns specified in its dummy argument
list, these are not included in the parameter list. Instead, the
alternate return value (0 for normal return) is set in the ERRCODE
position in the caller's stack element. This value may then be used in
a COMPUTED GO TO after return has been made to the caller.

The parameter list consists of a sequence of words, one for each dummy
argument. For arithmetic variables or expressions and logical
variables or expressions, the corresponding word contains the address
of the variable. For arrays of arithmetic or logical types, the word
contains the address of the first element of the array.

Scanned by Jonny Oddene for Sintran Data © 2011

414 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

For character variables or expressions, the word contains the address
of a descriptor consisting of two words:

word 1 length in bytes

word 2 address of word containing first character

For character arrays, the parameter word contains the address of a
descriptor for the first element of the array (i.e., one whose address
part is for the start of the array, and whose length is that of a
single element of the array).

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 415
INTERFACES TO OTHER LANGUAGE PROGRAMS

F.3 INVOKING PLANC FROM FORTRAN

All PLANC routines called from FORTRAN should be 'STANDARD'. Any PLANC
routine called from FORTRAN must contain an INISTACK invocation unless
the FORTRAN program is compiled using the REENTRANT-MODE command on
ND-100 or FIXED-DATA-AREA OFF on ND-500.

Example 1 - simple subroutine call

To call a subroutine with no complex arithmetic actual arguments, the
following can be written in FORTRAN:

EXTERNAL PLSUBR
INTEGER I
REAL R
C Call a subroutine written in PLANC
CALL PLSUBR {I,R)

and the corresponding PLANC code is:

MODULE msubr
EXPORT plsubr
INTEGER ARRAY : stack (1:1000]}
ROUTINE STANDARD VOID,VOID (INTEGER,REAL):plsubr (int,rl)
INISTACK stack
% body of routine
ENDROUTINE
ENDMODULE

Scanned by Jonny Oddene for Sintran Data © 2011

416 ’ ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

Example 2 - simple function call

To invoke a function which returns a non-complex arithmetic result.

e In FORTRAN:

EXTERNAL PLFUNC
REAL X,Y,PLFUNC
DOUBLE PRECISION D
C Invoke a function written in PLANC
Y=PLFUNC (X,D)

e In PLANC:

ROUTINE STANDARD VOID,REAL (REAL,REAL8) : plfunc (rl,db)
INISTACK stack
PLANC REAL8 is the same as FORTRAN DOUBLE PRECISION
RETURN
ENDROUTINE

N

Example 3 - use of logical arguments

On the ND-100:

FORTRAN LOGICAL*2 corresponds to PLANC BOOLEAN. FORTRAN LOGICAL*4 is
the following PLANC data type: '

TYPE booleand4d = RECORD
BOOLEAN : unused % first word always zero
BOOLEAN : value % contains actual value
ENDRECORD

LOGICAL*4 cannot be returned from a PLANC STANDARD function.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 417
INTERFACES TO OTHER LANGUAGE PROGRAMS

e In FORTRAN:

EXTERNAL PLBOOL
LOGICAL PLBOOL,V
LOGICAL*4 M4
V=PLBOOL (V,M4)

e In PLANRC:

ROUTINE STANDARD VOID,BOOLEAN (BOOLEAN,boolean4) : plbool &
(m,m4)
INISTACK stack
IF m4.value THEN
m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

On the ND-500:

FORTRAN LOGICAL*4 corresponds to PLANC BOOLEAN. The FORTRAN LOGICAL*2
data type has no direct equivalent in PLANC. FORTRAN LOGICAL*2 can be
handled in PLANC in the following way:

e In FORTRAN:
EXTERNAL PLBOOL
LOGICAL PLBOOL,V

LOGICAL*2 M2
V=PLBOOL (V,M2)

Scanned by Jonny Oddene for Sintran Data © 2011

418 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

e In PLARC:

ROUTINE STANDARD VOID,BOOLEAN (BOOLEAN, INTEGER2) :&
plbool(m,m2)
INISTACK stack
% the 2 integers must be contiguous in memory
INTEGERZ2 : intl,int2
BOOLEAN : booll=intl
m2=:int2
O=:int1
IF booll THEN
m RETURN
ENDIF
NOT m RETURN
ENDROUTINE

Example 4 — complex arguments and functions

FORTRAN COMPLEX has no direct corresponding data type in PLANC. It may
be defined as follows:

TYPE complex = RECORD

REAL : re % real part
REAL : im % imaginary part
ENDRECORD

Similarly the equivalent of FORTRAN DOUBLE COMPLEX is:

TYPE complex = RECORD

REAL8 : dre
REALS : dim
ENDRECORD

These types, once defined, may be used just like other record data
types.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 419
INTERFACES TO OTHER LANGUAGE PROGRAMS

On the ND-100:

e In FORTRAN:

COMPLEX C,CFUNC
EXTERNAL CFUNC
REAL R
C Invoke a PLANC function which returns a complex result
C=CFUNC (R)

e In PLANC:

ROUTINE STANDARD VOID,complex (REAL) : cfunc (r)
INISTACK stack
complex : ¢
r=:c.im=:c.re % store value in two identifiers
c RETURN
ENDROUTINE

On the ND-500:

e In FORTRAN:

COMPLEX C,CFUNC
EXTERNAL CFUNC
REAL R
C Invoke a PLANC function which returns a complex result
C=CFUNC (R}

¢ In PLANC:

ROUTINE STANDARD VOID,VOID (REAL) : cfunc (r)
INISTACK stack
complex : c
r=z:c.im=:c.re % store value in two identifiers
% set up values to be returned
$* Al:=c.re; A2:=c.im
RETURN
ENDROUTINE

Scanned by Jonny Oddene for Sintran Data © 2011

420 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

Example 5 — character string arquments

Since FORTRAN passes character strings through a descriptor, PLANC
routines must accept these as records. It is often most convenient to
recast the FORTRAN string descriptor as a PLANC bytes pointer. Thus:

On the ND-100:

TYPE ftnstring = RECORD % a blank must precede the -1
BYTES : ftnchars (0: ~1) % character data
ENDRECORD

TYPE ftndesc = RECORD PACKED

ftnstring POINTER :cstring % address of string

INTEGER RANGE (0:1B) :coddbyte % left/right byte start

INTEGER RANGE (0:17B) :cunused % unused

INTEGER RANGE (0:3777B)} :clength % length of string
ENDRECORD

Then in FORTRAN:

CHARACTER H*20
INTEGER I,J
EXTERNAL HSUB

CALL HSUB (H(I:J))

e which can be picked up in PLANC by:

ROUTINE STANDARD VOID,VOID (ftndesc) : hsub {hij)
INISTACK stack
BYTES POINTER : bp
ADDR (hij.cstring.ftnchars &
(hij.coddbyte: hij.clength-1+hij.coddbyte))} =:bp
% bp now contains the address of the FORTRAN character string
ENDROUTINE

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 421
INTERFACES TO OTHER LANGUAGE PROGRAMS

On the ND-500:

TYPE ftnstring = RECORD
BYTES : ftnchars (0: -1) &
% character data

ENDRECORD % a blank must precede &

the -1
TYPE ftndesc = RECORD
INTEGER RANGE (0:777777777B) : clength
ftnstring POINTER : cstring

ENDRECORD

e Then in FORTRAN:

CHARACTER H*20
INTEGER I,J
EXTERNAL HSUB
CALL HSUB (H(I:J))

e which can be picked up in PLANC by:
ROUTINE STANDARD VOID,VOID (ftndesc) : hsub (hij)

INISTACK stack
BYTES POINTER : bp

ADDR (hij.cstring.ftnchars {O:hij.clength-1))=:bp
% bp now contains the address of the FORTRAN character string
ENDROUTINE

Scanned by Jonny Oddene for Sintran Data © 2011

422 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

Example 6 — functions returning a character value

The definition of character data types must be made as in example 5.
But in this case there can be no true return value for the function,
so the PLANC code must simulate the return.

On the ND-100:

e In FORTRAN:

CHARACTER H*20,HFUNC*10
EXTERNAL HFUNC
H{1:10) = HFUNC (...)

e In PLANC:

ROUTINE STANDARD VOID,VOID : hfunc
INISTACK stack
BYTES POINTER : bp
ftndesc POINTER : dreg
$* COPY SD DA; STA dreg % return value descriptor

ADDR (dreg.cstring.ftnchars &

(dreg.coddbyte : dreg.clength-1+dreg.coddbyte])]=:bp
'0123456789 ' =:IND (bp) % set 'return value'
ENDROUTINE

On the ND-500:

e In FORTRAN:
CHARACTER H*20,HFUNC*10

EXTERNAL HFUNC
H(1:10) = HFUNC (...}

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 423
INTERFACES TO OTHER LANGUAGE PROGRAMS

¢ In PLANC:

ROUTINE STANDARD VOID,VOID : hfunc
INISTACK stack

BYTES POINTER : bp

ftndesc POINTER : rreg

$* R=:B.rreg % return value descriptor
ADDR {rreg.cstring.ftnchars {0 : rreg.clength-1))=:bp
‘0123456789 '=:IND (bp) % set 'return value'’
ENDROUTINE

F.4 INVOKING FORTRAN FROM PLANC

All FORTRAN subprograms invoked from PLANC must be IMPORT'ed as
STANDARD routines. FORTRAN functions have out-values, but no FORTRAN
routines have in-values.

Example 1 — a simple subroutine call

Call a FORTRAN subroutine with non-complex arithmetic dummy arguments.

e In PLANC:

IMPORT (ROUTINE STANDARD VOID,VOID (REAL,REAL8) : fsubr)
REAL : r
REALE : d

fsubr (r,d) % call the FORTRAN subroutine

¢ In FORTRAN:
SUBROUTINE FSUBR (R,D]
REAL R

DOUBLE PRECISION D
END

Scanned by Jonny Oddene for Sintran Data © 2011

424 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

Example 2 - a simple function

To invoke a function, returning a non-complex arithmetic result.

e In PLANC:

IMPORT (ROUTINE STANDARD VOID,VOID,INTEGER {INTEGER4) :ifunc)
INTEGER : k

INTEGER4 : kd
ifunc (kd)=:%k % invoke the FORTRAN function

e In FORTRAN:

INTEGER FUNCTION IFUNC (KD)
INTEGER*4 KD

IFUNC=. ..

RETURN

END

Example 3 — use of logical arguments

PLANC BOOLEAN is the same as LOGICAL in FORTRAN, LOGICAL*2 on the ND-
100 and LOGICAL*4 on the ND-500. LOGICAL*4 on the ND-100 or LOGICAL*2
on the ND-500 may be simulated as in example 3 in the previous
section.

On the ND-100:

¢ In PLANC:

IMPORT (ROUTINE STANDARD VOID,BOOLEAN (booleand):lfunc)
booleand : m4
IF 1func (m4) THEN...

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN ‘ 425
INTERFACES TO OTHER LANGUAGE PROGRAMS

e In FORTRAN:

LOGICAL FUNCTION LFUNC (M4)
LOGICAL*4 M4

LFUNC=. ..

RETURN

END

On the ND-500:

e In PLANRC:

IMPORT (ROUTINE STANDARD VOID,BOOLEAN (INTEGER2) :1func)
the 2 integers must be contiguous in memory
INTEGER2 : intl,int2
BOOLEAN : booll=intl
put a value in the boolean data-element
...=:bool1l
IF 1func (int2) THEN

N

~N

e In FORTRAN:

LOGICAL FUNCTION LFUNC (M2)
LOGICAL*2 M2

LFUNC=. ..

RETURN

END

Scanned by Jonny Oddene for Sintran Data © 2011

426 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

Example 4 - complex arguments and out-values

FORTRAN COMPLEX can be simulated in PLANC by the type declarations of
example 4 in the previous section.

e In PLANC:
IMPORT (ROUTINE VOID,complex (REAL) :cfunc)
complex : ¢
REAL : r

on the ND-100 invoke the FORTRAN function normally
cfunc(r)=:c

on the ND-500 invoke the FORTRAN function normally,

% but assembler is required to get the returned function value

&N

N

cfunc (r)
$* Al=:c.re; A2=:c.im

e In FORTRAN:

COMPLEX FUNCTION CFUNC (R)
REAL R

CFUNC=CMPLX (R,R]

RETURN

END

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 427
INTERFACES TO OTHER LANGUAGE PROGRAMS

Example 5 — character string arguments

FORTRAN handles character strings by means of descriptors, which can
be declared in PLANC as in example 5 in the previous section. These
descriptors must be created in PLANC before invocation of the FORTRAN
subprogram takes place.

e In PLARC:

IMPORT (ROUTINE STANDARD VOID,VOID (ftndesc) : hsub)
ftndesc : ed
BYTES : arg (1:100) % begins in left byte of word
INTEGER : i,

now transfer arg [(i:j) to FORTRAN
ADDR(arg (i))} FORCE ftnstring POINTER=:fd.cstring

% first byte - the following 2 lines are for the ND-100 only
1-{i MOD 2) =:fd.coddbyte %left/right byte
O=:fd.cunused

&N

e

j-i+1=:fd.clength % length of string
hsub (fd) % invoke FORTRAN subprogram
e In FORTRAN:

SUBROUTINE HSUB (FD)
CHARACTER FD* (*)

END

Scanned by Jonny Oddene for Sintran Data © 2011

428 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

Example 6 — character functions

Characters cannot be returned by FORTRAN to PLANC as out-values. The
memory area for the returned string must be allocated before invoking
the function and a special calling sequence is required.

N

N

&N

N

In PLANRC:

IMPORT (ROUTINE STANDARD VOID,VOID : hfunc)

ftndesc : fd
BYTES : val (0:19) % value returned here

ftndesc POINTER : fdp

ADDR({val {(0)) FORCE ftnstring POINTER=:fd.cstring
first byte - the following 2 lines are required for the
ND-100 only

0 =:fd.coddbyte

0 =:fd.cunused

MAXINDEX (val,1)}-MININDEX (val,1)+1=:fd.clength
ADDR (fd) =:fdp
on the ND-100 use:

$* LDA fdp; COPY SA DD % return descriptor address

on the ND-500 use:

$* R:=fdp % return descriptor address
hfunc % put result in 'val’
In FORTRAN:

CHARACTER * (*) FUNCTION HFUNC
HFUNC

RETURN

END

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 429
INTERFACES TO OTHER LANGUAGE PROGRAMS

F.5 CALLING COBOL FROM FORTRAN

On both the ND-100 and the ND-500, a FORTRAN program may call a
subprogram written in COBOL. Parameters are transferred by reference
between FORTRAN and COBOL. The data types which correspond in FORTRAN

and COBOL are as follows:

FORTRAN COBOL

INTEGER*2, 16-bits PIC S9{n) COMPUTATIONAL
where 1 £ n £ 4

INTEGER*4, 32-bits PIC S9(n) COMPUTATIONAL
where 5 £ n £ 10

REAL COMPUTATIONAL-2

HOLLERITH strings PIC X{(n)
where n is the number of bytes

COMPUTATIONAL-2 variables may only be used as a parameter in a
subroutine call to or from COBOL, or to convert to/from COMPUTATIONAL-

3 variables.

For example:

e In FORTRAN:

INTEGER*2 INT2
REAL RL
INTEGER*4 INT4
INT2=56
RL=54.12345
INT4=123456
C Call a COBOL subroutine
CALL CBSUB (INT2,RL,INT4, HOLL')

Scanned by Jonny Oddene for Sintran Data © 2011

430 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

¢ In COBOL:
PHOGRAM-ID. CBSUB.

DATA DIVISION
WORKING-STORAGE SECTION.

01 CB-REAL PIC S9(3)v9(6) COMP-3.
LINKAGE SECTION.
01 FTN-INT2 PIC 59(4) COMP.
01 FTN-INT4 PIC 59(6) COMP.
01 FTN-REAL COMP-2.
01 FTN-HOLLERITH PIC X(4]).
PROCEDURE DIVISION USING FTN-INT2
FTN-REAL
FTN-INT4

FTN-HOLLERITH.

PARA-1.
* CONVERT THE FORTRAN REAL VALUE TO THE INTERNAL

* COBOL FORM
MOVE FTN-REAL TO CB-REAL.
On ND-500 it is possible to transfere parameters of type CHARACTER and

NUMERIC between FORTRAN and COBOL routines. The routine that calls
the COBOL routine must be compiled with the command:

COBOL- INTERFACE <(routine-name>

¢ In FORTRAN:

NUMERIC (5,3] N
CHARACTER*4 CH
CALL COBROU {CH,N)

e In COBOL:

PROGRAM-ID. COBROU.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 FTN-STRING PIC X[(4]}.

01 FTN-NUMERIC PIC S9(3)v9(2) PACKED DECIMAL.

PROCEDURE DIVISION USING FTN-STRING
FTN-NUMERIC.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 431
INTERFACES TO OTHER LANGUAGE PROGRAMS

F.6 CALLING FORTRAN FROM COBOL

On both the ND-100 and the ND-500, a COBOL program may call a
subprogram written in FORTRAN. Parameters are transferred by reference
between FORTRAN and COBOL. The data types which correspond in FORTRAN
and COBOL are as follows:

FORTRAN COBOL

INTEGER*2, 16-bits PIC S9(n) COMPUTATIONAL
where 1 £ n 4

INTEGER*4, 32-bits PIC S9(n) COMPUTATIONAL
where 5 £ n £ 10

REAL COMPUTATIONAL-2

HOLLERITH strings PIC X(n)
where n is the number of bytes

COMPUTATIONAL-2 variables may only be used as a parameter in a
subroutine call to or from COBOL, or to convert to/from COMPUTATIONAL-
3 variables.

Parameters from COBOL must start on a word boundary, ND-100 only.

Scanned by Jonny Oddene for Sintran Data © 2011

432 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

For example:

¢ In COBOL:

DATA DIVISION.
WORKING-STORAGE SECTION.

01 FTN-INT2 PIC S9(4) CoOMP VALUE 123.

01 FTN-INT4 PIC S9(6) COMP VALUE 123456.

01 CB-REAL PIC S9(3)v9(6) COMP-3 VALUE -2. 71.

01 FTN-REAL COMP-2.

01 FTN-HOLLERITH PIC X(10) VALUE 'A123456789".
01 FTN-HLENGTH-WDS PIC 59(4) COMP VALUE 5.

* NUMBER OF CHARACTERS PER WORD IS DIFFERENT ON THE
* ND-500

PROCEDURE DIVISION.

PARA-1.
* CONVERT THE INTERNAL COBOL FROM THE FORTRAN REAL FORM
MOVE CB-REAL TO FTN-REAL.
* CALL A FORTRAN SUBROUTINE
CALL "FTNSUB” USING FTN-INT2
- FTN-REAL
FTN-INT4

FTN-HOLLERITH
FTN-HLENGTH-WDS .

e In FORTRAN:

SUBROUTINE FTNSUB (INT2,RL,INT4,HSTRING,HLENGTH)
INTEGER*2 INT2,HLENGTH,HSTRING (HLENGTH)
INTEGER*4 INT4
C May now access values passed from COBOL and return values to
C COBOL in the normal manner
RETURN
END

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 433
INTERFACES TO OTHER LANGUAGE PROGRAMS

On ND-500 it is also possible to transfer parameters of type
CHARACTER and NUMERIC between FORTRAN and COBOL routines. The
FORTRAN routine that is called from COBOL must be compiled with
the command:

COBOL- INTERFACFE <routine-name>

e In COBOL:

DATA DIVISION.

WORKING-STORAGE SECTION.

01 FTN-STRING PIC X(4) VALUE 'TEST'.

01 FTN-NUMERIC PIC S9(3)v9(2) PACKED-DECIMAL VALUE 345.67.
PROCEDURE DIVISION.

CALL "FTNSUB" USING FTN-STRING, FTN-NUMERIC.

¢ In FORTRAN:
SUBROUTINE FTNSUB (CH,N]
CHARACTER*4 CH

NUMERIC (5,2) N
END

Scanned by Jonny Oddene for Sintran Data © 2011

434 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

F.7 MAC SUBROUTINES (ND-100 ONLY)

When writing subroutines or functions to be called from FORTRAN, the
user should clearly understand the format of the run-time stack, and
the use of registers in the calling sequence, see Section F.l.

There is a marked difference between reentrant and non-reentrant
routines with regard to the available methods for acquiring local
workspace.

F.7.1 NON-REENTRANT ROUTINES

In this case, there is no space available in the FORTRAN routine's
local area (addressed by the B-register) which can be used by a called
subroutine. It is the called subroutine's responsibility to acquire
the local areas it needs on its own behalf.

An example of how to address parameters from a MAC routine is as
follows:

)9BEG

J9ENT SUBR

SUBR, % if called as CALL SUBR (I,R)
SWAP SA DB
STA SAVB % save FORTRAN's B-reg.
LDA 1 0,B % first parameter [(I)
LDF I 1,B % second parameter (R) 1
LDA SAVB
COPY SA DB % restore FORTRAN's B-reg.
EXIT

SAVB, 0

)9END

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN

435

INTERFACES TO OTHER LANGUAGE PROGRAMS

In order to mix MAC routines with
the following calling sequence be
F.7.5.):

)J9BEG

J9ENT SUBR

SUBR, COPY SL DX
JPL I (S5INIT
FRAME

NN NN

N

STACK
STSZ
0

NN W

o

0
% routine starts here

JSEND JPL I (S5LEAV %

FORTRAN, it is recommended that
used (see Sections F.7.4 and

return address

create a stack unit

size (in words) of the local
frame

address of stack space

total size of stack

or 1 if two-bank

operation

for debug use

return to caller

This will also aid the Symbolic Debugger to identify the FORTRAN
routines and trace the stack frames correctly.

Scanned by Jonny Oddene for Sintran Data © 2011

436 ND-60.145.8 EN
INTERFACES TO OTHER LANGUAGE PROGRAMS

F.7.2 REENTRANT ROUTINES

Routines which can be shared among several programs can be called only
from reentrant FORTRAN routines (see REENTRANT command, Section 12.8).
They can use the standard FORTRAN stack, which has been initialised by
a FORTRAN program. The MAC subroutines must not alter the length of
the stack, nor interfere with the two words which follow it. The
acquisition of the local stack area and return, can be done as
follows:

)9BEG
JO9ENT SUBR
SUBR, COPY SL DX % save routine return
JPL I (SENTR % acquire next frame
SIZE % size of frame (in words)
COPY SA DX % B-reg addresses stack
% frame
JPL 1 (S5LEAV % return up stack
JFILL
J9END

F.7.3 ALTERNATE RETURNS

An alternate return is handled by setting the appropriate value (from
1 upwards) corresponding to the number of the asterisks in the
parameter list of the CALL statement, into the return code slot of the
calling routine. Zero must be set if there is no alternate return
taken, but one was expected by the CALL.

The address of the caller's stack frame can be obtained by:

LDX SAVB % non-reentrant case
or
LDX -177.,B % reentrant case

and then the return value is set by:

value for return
store in caller's error code

LDA RETNV

o\° o\o

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 437
INTERFACES TO OTHER LANGUAGE PROGRAMS

F.7.4 CALLING FORTRAN SUBROUTINES

For non-reentrant FORTRAN routines, the parameter list must be built
at its correct place in the called routine's stack frame. For example:

LDA (PADR % parameter list address
JPL I (FSUB % call FORTRAN subroutine
PADR, I % first parameter address
R % second parameter address
1,54 % first parameter value
R, (3.141593 % second parameter value
LDX - 176,B % free stack space
LDA (1 % first parameter address
STA 6,X % first parameter position
LDA (R
STA 7,X % second parameter position
JPL I(FSUB
F.7.5 INVOKING FORTRAN INTRINSIC FUNCTIONS

All FORTRAN library routines must be treated like reentrant
FORTRAN subroutines, and space provided on the local stack for the
library workspace. To set up a local stack {and/or stack frame)
see Sections F.7.1 and F.7.2. The amount of space required by the
library for its stack frame can generally be determined by the
data type of the returned value. These values are subject to small
changes without notice, therefore a certain margin should be
allowed.

DATA TYPE STACK SIZE
INTEGER*2 10
INTEGER*4 40
REAL 65
DOUBLE PRECISION 160

Scanned by Jonny Oddene for Sintran Data © 2011

438 ND-60.145.8 EN
INTERFACES TQ OTHER LANGUAGE PROGRAMS

Scanned by Jonny Oddene for Sintran Data © 2011

440 ND-60.145.8 EN

————— —Scanned-byJerry-Odderefer-Sintran-bBata—©-2011

ND-60.145.8 EN 441
HOLLERITH

HOLLERITH

G.1 HOLLERITH CONSTANTS

The ANSI FORTRAN 77 Standard does not accept Hollerith constants. It
merely gives recommendations as to their use in an appendix to retain
some compatibility with previously existing programs.

ND FORTRAN implements these recommendations, with a few minor
additions and changes, to retain compatibility with programs which run
on the NORD-10 FORTRAN compiler. Details are as follows:

) CONSTANTS

Hollerith constants may have one of two forms. The first is:

where

n is a non-negative number.

hi... hn are the n characters in the source
program which immediately follow the H.

Blanks are significant among the hi, but the hi

cannot contain a carriage return, line feed, or tab characters.
The internal representation of a Hollerith constant is the
sequence of hi, as ASCII characters with the

parity bit set to zero.

Scanned by Jonny Oddene for Sintran Data © 2011

442 ND-60.145.8 EN
HOLLERITH

The second form is:

The double-quote characters ", octal 42, is the

delimiter for the Hollerith string. The h characters

inside the double-quotes may be replaced by any character except
carriage return, line feed or tab characters. If the string is to
contain a double—quote character, two of these should be written.

They can be used as constants only in DATA statements, as actual
arguments in subroutine or function invocations, as the right-hand
side of an arithmetic assignment statement, or as the value given
to a symbolic constant.

They may not appear in any other context; in particular, as values
for output, or in expressions.

* IN ASSIGRMENT STATEMENTS

A Hollerith constant as the right-hand side of an assignment
statement may be moved to an arithmetic or logical variable or
array element name without any form of conversion. The ASCII
characters are assigned byte-by-byte to the storage of the left-
hand side, starting at the leftmost byte. Padding with blanks or
truncation occurs on the right to the length of the storage for
the target. See Appendix E for the sizes of the variables.
Character variables cannot receive Hollerith constants.

® IN DATA STATEMENTS

An arithmetic or logical variable may take a Hollerith constant
from the constant list as its initial value in a DATA statement.
The assignment is as for the assignment statement. The
correspondence of data list and constant list is preserved.
Character variables cannot receive Hollerith values.

Scanned by Jonny Oddene for Sintran Data © 2011

ND-60.145.8 EN 443
HOLLERITH

e AS ACTUAL ARGUMENTS

Hollerith constants used as actual arguments must match their
corresponding dummy arguments for storage length. No padding will
occur; but if the actual argument is longer, only the first
characters are used in the dummy argument. The dummy argument
cannot be of type CHARACTER.

[AS A SYMBOLIC CORSTANT VALUE

The Hollerith constant is assigned to the symbolic constant as if
it were being assigned to a variable of the type of the symbolic
constant on the target machine of the compilation. The resulting
arithmetic value is then the value of the symbolic constant. The
allowable data types are only INTEGER*2 and INTEGER*4.

° IN A RELATIORAL COMPARISON

Variables can be compared with Hollerith data in an IF statement,
or general logical expression. The Hollerith data is treated as
though it were assigned to a variable of the same data type as the
other operand of the comparison, and the comparison is performed
as for that other data type. Character strings cannot be compared
with Hollerith data.

° A-FORMAT FOR HOLLERITH DATA

If the format Aw is used when the corresponding I/0 list

item is arithmetic or logical, then the data transfer is done
without conversion, except for parity bits being cleared on input
(unless the parity option has been coded on the OPEN statement for
the file, see Section 9.3.1).

On input, the w input characters are treated like a

Hollerith constant and assigned as in the assignment statement. On
output, w output characters are written from the storage of the
arithmetic or logical item.

Scanned by Jonny Oddene for Sintran Data © 2011

444 ND-60.145.8 EN
HOLLERITH

° RESTRICTIONS

If a logical variable has been assigned a Hollerith value, then
its use as a logical value will be unpredictable.

Real, double precision and complex variables containing Hollerith
values may be moved, but any form of arithmetic operation may give
unpredictable results due to hidden optimisations or conversions.

It is recommended that Hollerith constants be avoided whereVer
possible. Character variables may be equivalenced as an '
alternative. If Holleriths constants must be used, it is
recommended that the exact length be specified to prevent the
implied padding and truncation. This should ease the transport and
maintenance of these non-standard features.

Scanned by Jonny Oddene for Sintran Data © 2011

<CID
I NDEX LIST

Index term Reference
A format descriptor . 227
actual

arguments . 262

declarator . 40
adjustable

arrays . 39

dimensions . 46
alternate returns . 436
arithmetic

array expression . 109

constant . 29

expression . 85

operand . . 85

operator . 85
Arithmetic IF statement 137
array

adjustable . 39

assumed-size . 40

declarator . 40

definition 37

element name 38

expressions 109

size of . .. 37

storage, order of elements in . 39

subscript . 38
ASCII Character Set 293
ASSEMBLY statement 74
Assigned GO TO statement 135
assignment statements

arithmetic 123

character . 127

conversion in . 124

logical 125

statement label 126
asterisk

as a dummy argument . 243

Scanned by Jonny Oddene for Sintran Data © 2011

< IT >

Index term Reference
BACKSPACE statement . . 195
Blank COMMON

difference between named COMMON and . . 54

storage sequence of . . 53
Block COMMON

definition . . . 52

storage sequence of . . 53
BLOCK DATA statement . . 279
BLOCK DATA subprogram restrlctlons . 279
Block IF statement . . . 139
BN and BZ format descrlptors . 223
character

alphanumeric . 4

constant . 34

data type . . 27

expression . 93

operands . 93

operator . 93

special .4

substrings .41

Type statement . 61
CHARACTER Alignment . . . 287
CHARACTER and Hollerith . . 286
character array

expression . 113

operands . 113

operator . . 113
character set, FORTRAN . .4
CLOSE statement . 194
COBOL programs

invoking from FORTRAN . . 429

which invoke FORTRAN . 431
code and data sizes . 402
collating sequence .5
columns .7
comment line . .7
COMMON block storage sequence . . 53
common mapping . . 401
COMMON statement . 52

Scanned by Jonny Oddene for Sintran Data © 2011

< IIT >

Index term Reference
compiler
sample program 13
COMPLEX
constant . 33
data type . 27
expression . 85
Type statement . 58
Computed GO TO statement 133
constant expression
arithmetic . 89
character . . 95
logical 103
constants
arithmetic . 29
character 34
complex 33
double precision . 32
integer . 29
logical 34
real C e e . 31
constants, Hollerith . 441
CONTINUE statement 151
control statements 131
DATA statement .77
data types . 27
Device handling . . 340
digit,definition . 4
dimension
bounds . 45
declarator . 38
DIMENSION statement . 45
DO
FOR-ENDDO statements 148
loop e 144
loop, range of 144
statement .o 144
statement, execution 146
WHILE-ENDDO statements 149

Scanned by Jonny Oddene for Sintran Data © 2011

< IV D

Index term Reference
DOUBLE PRECISION

constant . 32

data type . . 27

expression . 85

Type statement . 58
dummy

argument . . 234

array declarator . 40

procedure . . 241
E and D format descriptors . . . 220
editing, use of format descriptors for . 214
ELSE statement . 140
ELSEIF statement . 139
END statement 154
ENDFILE statement . . 196
ENDIF statement . 141
End-of-File Specifier . . le4
ENTRY statement 266
EQUIVALENCE statement . . 48
error handling . 351
Error Messages . 301
Error specifier . . 165
EXCDEF routine . 380
EXCEPT routine . 373
exception handling . 369
exceptions

FORTRAN . 388
EXCTERM routine . . 382
executable statement .9
exponent

double precision . 32

real . 32
expression

arithmetic . 85

arithmetic array . 109

array . . 109

character . . . 93

character array . . 113

constant . 103

definition of . . 85

Scanned by Jonny Oddene for Sintran Data © 2011

\

>

Index term Reference
expression

evaluation 103

logical . 99

relational . 96

subscript . 38

substring . . 41
external

functions 261

procedure 10

statement 70
F format descriptor 217
file

definition 158
File Accessing 287
file operations 347
Format

descriptors . 210

specifications . 209

specifier and 1dent1f1er 163
formatted

data transfer . . 170

records, printing of 178
FORTRAN

character set 4

statement 9
FORTRAN exceptions . . 388
FORTRAN interfaces on the ND lOO . 407
FORTRAN interfaces on the ND-500 . 412
FORTRAN intrinsic functions . 437
FORTRAN subroutines

invoking from MAC . . 437
function

RAN . 367
functions

definition 233
functions, library ut111ty 365
G format descriptor . . 222

Scanned by Jonny Oddene for Sintran Data © 2011

< VI D

Index term Reference

GETMESS and PGETMESS routines 385
global item06
GO TO statement
Assigned o o13
Computed « . « .«133
Unconditional 132

H format descriptor 224
Hollerith constants 441

I and J format descriptors 215
IF statement
Arithmetic 137
Logical« . . .+138
IMPLICIT
statement66
implied '
DO lists « 169
type rules for identifiers 28
INPUT statement 181
input, list-directed17
Input-Output
Buffer Allocation ., 288
fileaccess o .. o ... 160
file format15
list-directed 170
lists « « + = + e « v v e v« 168
statements 157
status specifier 166
terms and concepts 157
INQUIRE statement 198
INTEGER
constant 4 e 0 e e e e e e e . w029
data type00 0. 27
expression85
Type statement58

Scanned by Jonny Oddene for Sintran Data © 2011

< VII >

Index term Reference
interfaces
on the ND-100 407
on the ND-500 412
to other language programs . ., 407
with COBOL programs « 429, 431
with MAC Y X ¥
with MAC subroutlnes .o Y« K ¥ §
with non-reentrant MAC routlnes < R 1
with PLANC programs . . . v v e v e« 415, 423
with reentrant MAC routlnes - 5 1<
INTRINSIC
statement 0L ...
INTRINSIC functions . . . e e e e e e o e ... 244, 437
invoking COBOL from FORTRAN Y W 2°
invoking FORTRAN from COBOL 431
invoking FORTRAN from PLANC e v e v e ... 423
invoking FORTRAN intrinsic functlons - X ¥
invoking FORTRAN subroutines from MAC 437
invoking MAC subroutines from FORTRAN 434
invoking non-reentrant MAC routines 434
invoking PLANC from FORTRAN 415
invoking reentrant MAC routines 436
keyword v« 4 v i i i v e e6
L format descriptor 226
languages '
interfaces to programs written in other 407
letter,definition . . . Y
library subprogram descrlptlons R | Y
library utility functions 365
table365
line
comment . .7
continuation . 7
initial .. .7
Loader error messages . . 316
local item . 6

Scanned by Jonny Oddene for Sintran Data © 2011

< VIII >

Index term Reference
LOGICAL
array expressions 117
constanto 34
data type27
expression 00000099
operand e e e e e e e e e .. .99
operator 000099
Type statement58
Logical IF statement 138
loop
control variable 284
definition 283

MAC subroutines

invoking from FORTRAN 434
main program .275
mapping

COMMON . .+ « & + « & + & « « o« v o o« v v « . . . 401

storage39
Monitor calls

commonly used 329

introduction 325
ND-100 and ND-500 monitor calls 352
ND-100 exception handling 369
ND-100 simulated traps 373
ND-500 traps and exception handling 369
ND-500 traps table 372
nonexecutable statement9
non-reentrant MAC routines

invoking from FORTRAN 434
numeric editing 214
0 format descriptor 228
octal values 0. .02
OPEN statement,182

Scanned by Jonny Oddene for Sintran Data © 2011

< IX D

Index term Reference
operands

arithmetic . 86

character . . 93

character array . . 113

logical . 99
operators

arithmetic . 86

character . . . 93

character array . . 113

logical 99

precedence order of . . 99

relational . 96
other languages

interfaces to programs written in . . 407
OUTPUT statement . . 181
output, list-directed . . 173
P format descriptor . . 218
PARAMETER

statement . . 68
parentheses . 103
PAUSE statement 153
PGETMESS and GETMESS routlnes . . 385
PLANC programs

invoking from FORTRAN . . 415

which invoke FORTRAN . 423
precedence of arithmetic operators . 86
PRIMESS routine . . 384
PRINT statement . . 180
PRITRAC routine . . 384
procedure

definition . 10

external . 10

main . 10
program

unit . 10
program admlnlstrator . . 330
PROGRAM statement . . 275
Programming Techniques . 283

Scanned by Jonny Oddene for Sintran Data © 2011

<X >

Index term Reference

programs, COBOL

invoking from FORTRAN 429

which invoke FORTRAN 431
programs, PLANC

invoking from FORTRAN 415

which invoke FORTRAN 423
RAN function < 367
RCURVAL routine 386
RDEFVAL routine 386
READ statement 174
REAL

constant00

data typeo .. 27

expression85

Type statement58
record

definition 157
record specifier 167
reentrant MAC routines

invoking from FORTRAN 436
relational

array expressions 115

expression ¢« v 4 . o 0w . .9

operand 4 v e 0w .o96

operator« . v . v e v9
restriction on accepting programs as ANSI FORTRAN 77
standard 402
results for arithmetic array expressions 111
retrieving, changing

device information 337

file system information 345
RETURN statement 270
returns

alternate43
REWIND statement 197
REXTERM routine 387
routine

EXCDEF « < .« o380

EXCEPT « « « v v v e v v v v v« .373

EXCTERM « . « . v « v v v v « . . 382

Scanned by Jonny Oddene for Sintran Data © 2011

< XTI >

Index term Reference
routine

GETMESS and PGETMESS . 385

PRIMESS . . 384

PRITRAC . . 384

RCURVAL . . 386

RDEFVAL . . 386

REXTERM . . 387
routines, non—reentrant MAC

invoking from FORTRAN . . 434
routines, reentrant MAC

invoking from FORTRAN . . 436
Runtime error diagnostics . . 316
S, SP and SS format descriptors . . 223
SAVE statement . . . 72
simulated traps, ND- 100 . 373
size in bytes of data types

ND-500 . . . 400

NORD-10 or 100, 32 b1t floatlng p01nt . . 399

NORD-10 or 100, 48-bit floating point . . 399
sizes, code and data e e . 402
slash format descriptor . . 226
special characters . . .4
special names in INTRINSIC functlons . 244
statement

executable . 9

FORTRAN . .9

functions . 258

label . .9

nonexecutable . .9
statement label .9
STOP statement 152
storage mapping . . 393
subprogram descrlptlons, llbrary 367
subroutine

definition . 264

referencing to a . 265

subprogram restrictions . 266

Scanned by Jonny Oddene for Sintran Data © 2011

< XIT >

Index term Reference
subroutines, FORTRAN

invoking from MAC . . 437
subroutines, MAC

invoking from FORTRAN . . 434
subscript

array . . 38

expression . 38
substring

character . . 41

expression . 41
symbolic name . . 6
syntactic item . 6
T, TL, TR and rX format descriptors . . 225
tab positions . . B
text format descrlptor . 224
traps

ND-100 simulated . . 373

ND-500 and exception handllng . . 369

ND-500, table . e e e . 372
Type statements . 58
Unconditional GO TO statement . . 132
unformatted

data transfer . . 170
Units . . . 162
utility functlons, llbrary . 365
variable

as dummy argument . . 238
variables

definition . 36
WRITE statement . . 176

Scanned by Jonny Oddene for Sintran Data © 2011

< XIII >

Index term Reference

Z format descriptor 229

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

Manual Name:

SEND US YOUR COMMENTS!

Are you frustrated because of unclear information in our
manuals? Do you have trouble finding things?

Please let us know if you:

— find errors

— cannot understand information
— cannot find information

— find needless information.

Do you think we could improve our manuals by rearranging
the contents? You could also teli us if you like the manual.

Send to:
Norsk Data A.S
Documentation Department
P.O. Box 25 BOGERUD
N - 0621 OSLO 6 - Norway

NOTE!
This form is primarily for documentation errors. Software

and system errors should be reported on Customer System
Reports.

Manual number:

Which version of the product are you using?

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

Scanned by Jonny Oddene for Sintran Data © 2011

Seannredbyderry-Oddene for Sintran-Bata-© 2011

Scanned by Jonny Oddene for Sintran Data © 2011

*_
i
.
|
m)
3
g

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img197
	img198
	img199
	img200
	img201
	img202
	img203
	img204
	img205
	img206
	img207
	img208
	img209
	img210
	img211
	img212
	img213
	img214
	img215
	img216
	img217
	img218
	img219
	img220
	img221
	img222
	img223
	img224
	img225
	img226
	img227
	img228
	img229
	img230
	img231
	img232
	img233
	img234
	img235
	img236
	img237
	img238
	img239
	img240
	img241
	img242
	img243
	img244
	img245
	img246
	img247
	img248
	img249
	img250
	img251
	img252
	img253
	img254
	img255
	img256
	img257
	img258
	img259
	img260
	img261
	img262
	img263
	img264
	img265
	img266
	img267
	img268
	img269
	img270
	img271
	img272
	img273
	img274
	img275
	img276
	img277
	img278
	img279
	img280
	img281
	img282
	img283
	img284
	img285
	img286
	img287
	img288
	img289
	img290
	img291
	img292
	img293
	img294
	img295
	img296
	img297
	img298
	img299
	img300
	img301
	img302
	img303
	img304
	img305
	img306
	img307
	img308
	img309
	img310
	img311
	img312
	img313
	img314
	img315
	img316
	img317
	img318
	img319
	img320
	img321
	img322
	img323
	img324
	img325
	img326
	img327
	img328
	img329
	img330
	img331
	img332
	img333
	img334
	img335
	img336
	img337
	img338
	img339
	img340
	img341
	img342
	img343
	img344
	img345
	img346
	img347
	img348
	img349
	img350
	img351
	img352
	img353
	img354
	img355
	img356
	img357
	img358
	img359
	img360
	img361
	img362
	img363
	img364
	img365
	img366
	img367
	img368
	img369
	img370
	img371
	img372
	img373
	img374
	img375
	img376
	img377
	img378
	img379
	img380
	img381
	img382
	img383
	img384
	img385
	img386
	img387
	img388
	img389
	img390
	img391
	img392
	img393
	img394
	img395
	img396
	img397
	img398
	img399
	img400
	img401
	img402
	img403
	img404
	img405
	img406
	img407
	img408
	img409
	img410
	img411
	img412
	img413
	img414
	img415
	img416
	img417
	img418
	img419
	img420
	img421
	img422
	img423
	img424
	img425
	img426
	img427
	img428
	img429
	img430
	img431
	img432
	img433
	img434
	img435
	img436
	img437
	img438
	img439
	img440
	img441
	img442
	img443
	img444
	img445
	img446
	img447
	img448
	img449
	img450
	img451
	img452
	img453
	img454
	img455
	img456
	img457
	img458
	img459
	img460
	img461
	img462
	img463
	img464
	img465
	img466
	img467
	img468
	img469
	img470
	img471
	img472
	img473
	img474
	img475
	img476
	img477
	img478

