Reference Manual

o7
K
=
oo}
2>
€3
U
wn
<
<
L
0
)
>
Q
z

Scanned by Jonny Oddene for Sintran Data © 2011

- NORD-500 ASSEMBLER
Reference Manual

Scanned by Jonny Oddene for Sintran Data © 2011

NOTICE

The information in this document is subject to change without notice. Norsk
Data A.S assumes no responsibility for any errors that may appear in this docu-
ment. Norsk Data A.S assumes no responsibility for the use or reliability of its
software on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reprcduced or translated without the prior consent of Norsk
Data A.S.

Copyright (C) 1979 by Norsk Data A.S.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

PRINTING RECORD

Printing Notes

06/79 ORIGINAL PRINTING

05/80 SECOND EDITION — Replaces Original Printing

L

NORD-500 ASSEMBLER Reference Manual
Publication No. ND-60.113.02

sesse 2se se333233s NORSK DATA AS

900000000 o060
000000008 022000222 P.O.Box4, Lindeberg gard
835 °888 333322%% Oslo 10, Norway

Scanned by Jonny Oddene for Sintran Data © 2011

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one or
more single pages to be merged into the manual by the user, each revised page
being listed on the new printing record sent out with the revision. The old
printing record shouid be replaced by the new one.

New versions and revisions are announced in the ND Builetin and can be ordered
as described below.

The reader’s comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are weicome.

These forms, together with all types of inquiry and requests for documentation
should be sent to the local ND office or (in Norway) to:

Documentation Department
Norsk Data A.S

P.0O. Box 4, Lindeberg gard
QOslo 10

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

PREFACE

The Reader:

We assume that you are a programmer who has a general knowledge of
Assemblers. You may be an inexperienced or experienced assembler programmer.
The structure of this manual will, we hope, benefit all.

The Manual:

In this manual we begin by briefly orienting you with the NORD-500 Assembler
and its environment. The NORD-500 Assembler runs under the SINTRAN Il
operating system. We have also written two simple assembly programs and
commented on them so that you can feel more comfortable with the NORD-500
Assembler. Apart from this, the manual is organized as a reference manual.

Related Manuals:

You must have the NORD-500 CPU Reference Manual for the complete definition
of Iinstructions and addressing modes.

The Product:

This manual describes the NORD-500 Assembler ianguage, version 1.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

vii

TABLE OF CONTENTS

+ o+ o+
Section: Page:
1 INTRODUCTION .. e 1—1
1.1 NORD-500 ASSEMBLER ENVIRONMENT 1-2
1.2 DEFINITION OF ASSEMBLERS 1-3
1.3 EXAMPLE 1 — MODULEEXAMPLE 1—4
1.4 EXAMPLE 2 — MODULEHANOGI 1-5
2 THE ASSEMBLY LANGUAGE 2-1
2.1 SOURCE PROGRAM FORMAT 2-2
2.2 BASICELEMENTS 2-3
2.3 INSTRUCTIONS ... 2-5
2.3.1 Labels 2—-5
2.3.2 instruction Codes . .. 2—6
2.3.3 Operand Specifiers 2-7
2.3.3.1 Direct Onerands 2-7
2.3.3.2 General Operands 2—-8
2.4 EXPRESSIONS ... 2—1
2.4.1 Operators and Operand Data Types 2—1
2.4.2 INrinsic Constants 2—13
2.4.3 INTINSIC FUNCHONS © o v e e e e s 2—-14
2.4.4 Expression Syntax, 2—16
2.5 DIRECTIVES e 2—17
2.5.1 Declaration and Definition Directives 2—-18
2511 MODULE and ENDMODULE 2-18
2.5.1.2 IMPORT-Pand IMPORT-D 2--18
25.1.3 EXPORT . 2—-19
2.5.1.4 MAIN 2—-19
2.5.15 LIB 2—19
2.5.1.6 ALIAS e 2—20
2517 ROUTINE and ENDROUTINE 2—-20
25.1.8 STACK and ENDSTACK 2—-21
2.5.1.9 RECORD and ENDRECORD 2-23
2.5.1.10 EQUand SEQU 2-24
2.5.2 Data Allocation Directives 2—25
2.5.2.1 BLOCK .. e 2—-25
2522 DATAand PROG 2-25
2523 DESC .. e 2—26
2.5.2.4 ARRAY and STRING 2—26
2.6.2.5 ARRAYDATA and STRINGDATA 2-27
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

viii

Section: Page:
2.5.3 Location Counter Control Directives 2-27
2.5.3.1 ORG-Pand ORG-D i, 2-27
2.5.3.2 BOUND-Pand BOUND-D 2-28
254 Miscellaneous Directives 2-28
2.6 COMMANDS . .. e, 2—-29
2.6.1 Listing Control Commands 2-29
2.6.1.1 $LISTand $NOLIST ... 2-29
2.6.1.2 STITLE ..o 2-29
2.6.1.3 $EJECTand FormFeed 2-30
2.6.2 Conditional Assembly Commands 2-31
2.6.2.1 $iF, $ELSIF, $ELSE, and $ENDIF 2-31
2.6.3 Source File Library Commands 2-32
2.6.3.1 $INCLUDE and $SECTION 2-32
2.6.4 Macro Definitionsand Macro Calls 2—-33
2.6.4.1 $MACRO .. 2-33
2.6.4.2 $ENDMACRO 2-33
2.6.4.3 $EXITMACRO ... 2-34
2.6.4.4 Macro Calls 2-35
2.6.45 MacroNesting 2-36
2.6.4.6 Special Forms; #NARG, "LABEL"”, and "MNO""2-37
2.6.5 Miscellaneous Commands 2-38
2.6.5.1 $PACK and $ALIGN 2-38
2.6.5.2 $EOF . 2-38
3 ASSEMBLER CPERATING PROCEDURE3-1
3.1 HELP . e 3-2
3.2 EXIT 3-2
3.3 LINES .. e 3-2
3.4 ASSEMBLE e 3-2
3.5 LIST, NO-LIST e 3-2
3.6 PRINT-MACRO e 3—4
3.7 TABLE-SIZES 3—-4
4 ASSEMBLY LISTING FORMAT 41
4.1 PAGE HEADING 41
4.2 PROGRAMLISTING e 42
4.3 SYMBOLTABLE 43
4.4 CROSS-REFERENCETABLE 43
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Appendix: Page:

A SUMMARY OF DIRECTIVES A—1
B SUMMARY OF COMMANDS B—1
C RESERVED SYMBOLS C—1
D INTRINSIC CONSTANT AND FUNCTION

SUMMARY . D—1
E MODULE EXAMPLE LISTING E—1
F ADDRESS CODES F—1
G ADDRESS CODETABLE G—1
H INSTRUCTION LIST H—1

INSTRUCTION CODE TABLE [—1

iINDEX

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

INTRODUCTION

The NORD-500 Computer Systermn consists of the NORD-500 CPU, the NORD-100
CPU and a shared memory. The NORD-500 Assembler is a two pass cross
assembler which runs under the SINTRAN Il operating system on the NORD-100
CPU, and produces relocatable code for the NORD-500 CPU (refer to Figure 1.1).
The object code produced is in standard NORD Relocatabie Format (NRF), which
may be loaded by the NORD-500 loader. In addition to binary code, an assembly
listing is produced. This listing consists of the NORD-500 source code. You also
have the option of listing the produced code in octal format. The symbol table is
printed after the listing. A cross reference table may be generated and printed at
the end of the listing.

The same version of this assembler will run on both 32-bit and 48-bit floating point
NORD-100 Central Processing Units.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

1.1

THE NORD-500 ASSEMBLER ENVIRONMENT UNDER SINTRAN 11/

NORD-100 SOURCE
CODE (:5YMB)
NORD-500
ASSEMBLER
RELOCATABLE
OBJECT CODE
NORD-100/NORD-500 (:NRF)
NORD-500
LOADER
GENERATED | NONRELOCATABLE
CODE CODE/EXECUTION CODE
PSEG
NORD-500 EIS;KG and
PROGRAM
Figure 1.1.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

1.2

DEFINITION OF ASSEMBLERS

During execution of a program, the instruction sequence is represented inside the
computer by binary instructions. However, the programmer specifies instructions
symbolically. The conversion from a symbolic representation of a program to its
binary representation inside the computer can itself be performed by a computer
program. This is referred to as the assembly process, and the program which
performs the conversion is called an assembler.

An assembler is @ program that accepts a program written in assembly language as
input and produces its machine language equivaient. Each instruction word in an
assembly language program is transiated to only one instruction ir machine
language.

Thus, we can think of an assembler as a function, the domain of which is the set
of all legal assembly language instructions, and the range of which is the
corresponding set of machine language instructions. Operation of the assembler A
on a symbolic assembly language program S produces a machine language
program M, i.e., M = A (S).

Symbolic — Machine language
program S — Assembler A) - program M

Figure 1.2: The Operation of an Assembler

On the following three pages are two simple examples using the NORD-500
Assembler. The output listing from Example 1 is found in Appendix E. Please note
that the percent sign (%) indicates comments.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

14

1.3 EXAMPLE 1 — MODULE EXAMPLE
I]|D I: INSTRUCTION CODE, D: DIRECTIVE, % COMMENT
X MODULE EXAMPLE b4 NAME OF MODULE
X MAIN START % SPECIFIES MAIN ENTRY POINT
X ROUTINE LNG
%
% COMPUTE: PAR3 = SQRT(PAR1%##2 4 PAR2#¥#2)
3 |
X | DSTX: STACK FIXED % START OF STACK DEFINITION
X | APART: W BLOCK 1 % ADDRESS CF 1. PARAMETER
X | APAR2: W BLOCK 1) e I
X | APAR3: W BLOCK 1 % m——e M e 3, = M ao
X ENDSTACK
%
X LNG: ENTF DSTX b4 ENTER SUBROUTINE WITH
b4 FIXED DATA AREA BEGINNING
% AT 'DSTK'.
X F1 := IND(B.APAR1) % LOAD 1. PARAMETER
X F1 * F1 b4 SQUARE
X F2 := IND(B.APAR2) % LOAD 2. PARAMETER
X F2 MULAD F2,F1 b4 SQUARE AND ADD
X F2 SQRT F2 % TAKE SQUARERQOT
X F2 =: IND(B.APAR3) o STORE IN 5. PARAMETER
X RET z RETURN
X ENDROUTINE
) |
o
% MAIN PROGRAM
%
X | STX STACK FIXED)4 START OF STACK DEFINITICN
X|A: F DATA 3.0 % DEFINE A AS 3.0
X | BB: F DATA 4.0 % DEFINE BB AS 4.0
X|C: F BLOCK 1 % DECLARE SPACE FOR
b4 ONE REAL VARIABLE.
X ENDSTACK
%
3 INITIATE STACK AREA WITH MAIN PROGRAM STACX
% FRAME BEGINNING AT 'STK', LENGTH #SCLC, AND
% TOTAL STACK DEMAND OF 100.
% #SCLC IS AN INTRINSIC FUNCTION GIVING THE
b4 SIZE CF THE STACK FRAME IN THE LAST PRECEEDING
% DEFINITION.
%
X START: INIT STK,#SCLC, 100
%
% CALL ROUTINE WITH 3 LOCAL PARAMETERS A, BB
% AND C.
1
X CALL LNG,3,B.A,B.BB,B.C
aq
o
% "RETURN" FROM MAIN PROGRAM, I.E. STOP.
b4
X RET
X ENDMODULE

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

1.4

EXAMPLE 2 — MODULE HANO/

NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 MARCH 1980Q 1430:20 PAGE 1
MODULE HANOI.

MODULE HANOI
MAIN BEG

PROGRAM TO SOLVE THE PROBLEM OF THE TOWERS OF HANOI.

ONE PEG CONTAINS A STACK OF DISKS WI1TH DECREASING DIAMETERS,
SUCH THAT THE LARGEST DISK IS AT THE BOTTOM AND THE SMALLEST
AT THE TOP. THE OBJECTIVE IS TO MOVE THIS PILE TO ANOTHER
PEG, COBSERVING THE CONSTRAINTS THAT ONLY ONE DISK AT 4

TIME IS TO BE MOVED, AND NO LARGER DISK MAY BE ON TOP OF A
SMALLER ONE.

A THIRD PEG IS USED AS AN INTERMEDIATE STORAGE.

THE RESULT OF THE PROGRAM IS A SEQUENCE OF RECORDS IN MEMORY.
EACH RECORD IS CONCERNED WITH THE MOVEMENT OF ONE DISK. IT
CONSISTS OF THE DISK NUMBER (1 BEING THE TOPMOST), THE PEG
FROM WHICH IT IS MOVED, AND THE DESTINATION PEG.

TR oN TR el bR WU R W wh R R PR B R PR WRA WA

RECORD % START OF RECORD DEFINITION
NO: W BLOCK 1
FR: W BLOCK 1
TR: W BLOCK °
INDRECORD
3
3 ROUTINE TO DC THE MCVEMENT OF THE DISKS.
4
ROUTINE MOVEV
STACK
N: W BLOCK 1 % 1. PARAMETER (CALL 3Y VALUE)
FROM: W BLOCK 1 4 2. mmmmlmman
VIA: W BLOCK 1 $ 3. ammaMemeo
T0: W BLOCK 1 3 b, mmeMeme-
NM1: W BLOCK 1 % LOCAL VARIABLE
ENDSTACX
MOVEV: ENTS #SCLC 3 ENTER STACK SUBROUTINE. STACKDEMAND
% IS GIVEN BY #SCLC, TEE SIZE OF THE
4 PRECEEDING STACK FRAME DECLARATION.
W1 := B.N; W DECR W1 % DECREMENT DISK NO. BY ONE AND
W1 =: B.NM) 3 STORE IN LOCAL VARIABLE 'NM1'.
IF> GO MREST 4 MORE THAN ONE DISK TO MOVE ?
CALL MOVED,0 %2 NO, MOVE THIS DISK AND RETURN.

RET
% YES, MOVE 'NM1' DISKS FROM PEG 'FROM'
% VIA PEG 'TO' TO PEG 'VIA'.
MREST: CALL MOVEV,4,IND(B.NM1),IND(B.FROM),IND(B.TO),IND(B.VIA)
CALL MOVED,O % MOVE ONE DISK FROM 'FROM' TO 'TO'.

% MOVE THE °'NM1’ DISKS FRCM 'VIA'
% VIA 'FROM' TO PEG 'TO'.

CALL MOVEV,4,IND(B.NM1),IND(B.VIA),IND(B.FROM),IND(B.TO)
RET

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

1-6

NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 MARCH 1980 1430:23 PAGE 2
MODULE HANOI.

%
% RECORD THE MOVEMENT 'OF ONE DISK. R4 CONTAINS A POINTER
» TO THE RECORD. #RCLC GIVES THE RECORD SIZE OF THE LAST
% RECORD DEFINITION.

»

M

OVED: ENTD b4 ENTER "DIRECT" SUBROUTINE.
Wh + #RCLC % INCREMENT RECORD POINTER.

W MOVE B.N,W4.NO; W MOVE B.FROM,W4.FR; W MOVE B.TO,W4.TR

RETD % RETURN FROM "DIRECT" SUBROUTINE.
ENDROUTINE

q

y]

% MAIN PROGRAM AND DATA INITIALIZATION.

%

STKSIZ: EQU 2000 % TOTAL (MAX) STACK DEMAND.

MSTK: STACK FIXED
NN: W DATA 3
NFROM: W DATA 1
NVIA: W DATA 2
NTO: W DATA 3
ENDSTACK

NUMBER OF DISKS.
SOURCE PEG NO.
TEMPORARY PEG NC.
DESTINATION PEG NO.

BU B R W

INITIALIZE MAIN PRCGRAM WITH LOCAL DATA AREA BEGINNING AT
'MSTX', STACKDEMAND IN MAIN PROGRAM IS #SCLC, AND TOTAL
STACKDEMAND 'STXSIZ'. THE RECORD AREA IS LOCATEZD AFTZR THE
STACK AREA.

EG: INIT MSTX,#SCLC,STXSIZ
W4 := ADDR(MSTX); W4 + STKSIZ-#RCLC

07 ¥ v Bl 2R A B

CALL SUBRQUTINE TO DO THE MOVING. THE FOUR PARAMETERS ARE
PASSED WITH "CALL BY VALUE"™ TYPE TRANSFER.

8l 2R o BN

CALL MOVEV,4,IND(B.NN),IND(B.NFROM),IND(B.NVIA),IND(B.NTO)
RET % "RETURN" FRCM MAIN PROG., I.E. STCP.

ENDMODULE

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 MARCH 1960 1430:25 PAGE 3
SYMBOL TABLE

GLOBAL SYMBOLS

BEG W P M 00000000105
FR W oA 00000000004
MOVEV W P 00000000000
MSTK W D 00000000000
NFROM W A 00000000030
NN W A 00000000024
NO W A 00000000000
NTO W 4 00000000040
NVIA W A 00000000034
STKSIZ oA 00000003720
TR W A 00000000010
NORD-500 ASSEMBLER 2.5 WEDNESDAY 26 MARCH 1980 1430:25 PAGE 4
NO ERRORS DETECTED
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

THE ASSEMBLY LANGUAGE

In order to describe the syntax of the assembly language, we will use a meta
language (i.e., a language to describe another language). The rules of this meta
language are as follows:

— A meta variable is a sequence of letters, digits, and hyphens.

— A terminal symbol! is represented as a siring of characters enclosed within
single or double quotes.

— Alternatives are separated by a slash /.

— Optional items are surrounded by brackets |].

— Parentheses () can be used to group together constructs.

— A dollar sign $ before a construct means repetition.

— A decimal number immediately preceding/following a dollar sign $ speci-

fies the minimum. maximum number of occurrences of the repeated
construct.

Scme basic corstructs that are used in this manuel are defined beiow:

— detwer = TAY BT Yz
— digit = "0/ vy L 89,
— decimal number = 1$ digit;

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.1

SOURCE PROGRAM FORMAT

— The ASCll character setis used to represent source programs.

— All characters in the interval of 0-37B are ignored, except for form feed
(14B), carriage return (15B), and end-of-file (278).

— Lower case letters are converted to upper case.

— A percent sign (%), not occurring inside a string constant, means that the
resi of the lineis a comment.

- Biank lines are treated as comment lines.

— An ampersand &, not occurring inside a string constant, means that the
current statement continues on the next line. You may only have blanks and
comments after the ampersand on the current line. Ampersands may occur
between basic elements, but not within them.

— A statementis terminated by a semicolon (;) cr carriage return.,

- Empty statements are permitted.

There are three ypes of "orders’ isiatements) you may give 1o 'ne assembler:
Instructions (for example, W ADDZ OP1. OP2)

Instructions are transiated into machine fanguage instructions for placement
in the user’'s program memory.

Directives (for exampie, MODULE)

Directives specify attributes of the generated NRF (such as naming the main
entry point), allocate data storage, and preset constant data.

Commands (for example, $LIST)
Commands control the processing of the program text through conditional

assembly, macro definition, listing options, and selection of program
statements for assembly.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.2

BASIC ELEMENTS

The basic elements which make up a source program are: identifiers, string
constants, integer constants, real constants, and file names.

IDENTIFIER

An identifier may consist of letiers, digits, number signs (#) and underscores
{_). The first character must be a letter, question mark (?) or number sign.
Two underscore characters may not be placed side by side. The underscore
character is significant in the identifier. If an identifier starts with a question
mark it is called invisible and is never listed in the symbol table dump. This
feature is intended for use with generated symbols in macro calls. An
identifier may be of any length, but only the first 16 characters are
significant. The word symbo,” is synonymous with identifier. For a iist of
reserved symbols refer to Appendix C.

STRING CONSTANT

A string constant consists of a sequence of characters enclosed with single
quotes. If a single quote is to be included in the string it must be written
twice. The maximum length of a string constantis 30 characters.

INTEGER CONSTANT

An integer constant may be one of four forms: binary, octal, decimal, and
hexadecimal. It consists of a sequence of digits, followed by a radix
specifier, optionally followed by an exponent. The default radix is decimal.
The radix specifiers are; X = binary, B = octal, D = decimal {default), and
H = hexadecimai. The exponent is always interpreted as a decimal number.
As an example: 15B3 is the same as 15000B or 1AH2. In order to avoid
conflicts with identifiers, a hexadecimal constant must always start with a
decimal digit (i.e., the constant FF,; must be written @FFH). An integer
constant is represented internally as a 32-bit 2's complement number.

REAL CONSTANT
A real constant must contain a decimal point which must not be the first
character. An exponent may be specified, preceded by the letter E. A real

constant is represented internally in the NORD-500 double precision floating
point format {sign bit, 9-bit exponent, 54 { + 1)-bit mantissa).

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2-4

FILE NAME
A file name is a string of any characters. It is terminated by a space, comma,

or carriage-return. No syntax check of file names is performed by the
assembler. File names are used only in commands.

SYNTAX OF BASIC ELEMENTS.

identifier = id-part-1 $ ibreak-character id-part-2);
id-part-1 = letter/ g0 ?Y
id-part-2 = letter/ digit/ “#'";

break-character =

string-constant = $ (<any character except = >/ 7 ' ")

integer-constant = binary-constant/ ocral-constant; decimal-consiant/
hex-constant;

binary-constant = 1$ binary-digit X" exponeni;;

octal-constant = 1$ octai-digit “'B" [exponent]:

decimal-constant = 1$ digit ['D” [exporent]];

hex-constant = digit $ hex-digit "H’* [exponent];

binary-digit = RV I

octal-digit = YOty LR T

hex-digit = digit/ "A’/ B/ C D RS RY,

exponent = decimal-number;

real-constant = 1$ digit . $ digit ["E” [+"/ ”-"] exponent]

file-name = 1$ <any character except comma or space >;
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.3

2.3.1

INSTRUCTIONS

This section describes the assembly format for NORD-500 instruction codes and
operand specifiers. Please refer to the NORD-500 CPU Reference Manual for a
complete description of instruction codes {octal value and assembly notation),
addressing modes, address codes and operand specifiers. Refer also to
Appendixes F, G, H and |. The assembly format for an instruction is:

[label] instruction code {operand specifiers].

Each partis described in the following sections.

Labels

A label is a definition of a symbol’s address. The optional label consists of an
identifier followed by a colon. An instructicn may have more than one label. Labels
are aiso allowed on empty siatements {i.e., the iabel is immediately followed bv
end-of-line or semicoion). Labels on instruction lines are assigned the current value
of the program location counter. (See Section 2.5 on DIRECTIVES, STACK and
RECORD.)

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.3.2

Instruction Codes

The instruction code name is the main part of the instruction code. The instruction
code name is a string of characters identifying the operation to be performed. The
instruction code names are not reserved symbols in the assembler. If the
instruction cocde name does not end with a special character (=, :, +, —, *,
or /)it mustbe terminated by atleast one space.

Many instruction codes start with a data type specifier. These are:

Bl Bit

BY Byte (8 bits)

H Half-word (16 bits)

W Word {32-bit integer!}

F Single precision real {32-bit floating point)
D Double precision real (64-bit floating point)

if the instruction uses one of the integer or floating point accumulators as a
destination and/or source operand, the register number is specified following the
data type specifier (e.g., W1 forinteger accumulator one).

Spaces are allowed foilowing the data type specifier and the register number. For
the IF and GO operations, spaces are allowed before and after ‘cond’. The
foliowing are examples of legel operaticn codes:

BY 1 COMP BY 1COMP

BY1 COMP BY1COMP

W SuB2 WSUB2
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.3.3

2.3.3.1

Operand Specifiers

The instruction code is followed by a list of zero or more operand specifiers,
separated by commas. Operand specifiers are divided into two main categories:
direct operands and general operands. Direct operands are operands found in the
bytes immediately following the instruction code or the previous onerand speciiier.
General operands are operands accessed via an address code.

Direct Operands

A direct operand is an absolute addresses of program or data; or a displacement,
which applies to program addresses only.

Direct Absolute Addressing

A direct absoiute addressing operand is always assembled as a 32-bit word.
Exampies of cirect absolute addressing operands are the address in CALL (but not
CALLQG) and the address of the stack in ENTM. The former is a program address,
the latter a data address.

Displacement Addressing

Displacements are usea in the LOOP and GO instructicns 10 address the destin-
ation. A displacement is stored as a word, half-word, or byte depending upon its
magnitude. To force the displacement to be stored in a particuiar format, the
following length specifiers can be used:

B Store operand as a byte (8 bits)
‘H Store operand as a half-word (16 bits)
‘W Store operand as a word (32 bits)

:B and :H arée legal for ali GO and LOOP instructions while W is legal orly for GO
{not for IF cond GO).

If the assembler is unable to select the correct storage format for a displacement,
:B is selected. If this is not large enough, an error diagnostic results in pass two
and the programmer is responsible for adding the correct length specifier. Example
of legal GO instructions are: '

GO LABX GO LABX:B
GO LABX:W iF = GO LABZ:H
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.3.3.2

General Operands

The general operand is the most common operand type. It is used when accessing
constants, registers, and data memory. The NORD-500 has 10 different addressing
modes and 2 operand specifier prefixes.

In most cases the assembler selects the optimal siorage format for constants and
displacements in general operands. If, however, you want 0 force the storage
format to a particular iength, the following data part length specifiers are available:

Short (6 bits)

Byte (8 bits)

Half-word (16 bits)

Word {32 bits)

Single precision real {32-bit floating point)
Double precision real {64-bit floating point)

OMNSITOO

Note that no type conversion of values is performed at assembly time. This means
that an integer constant cannot be converted to a real constant by appending any
of the :F or :D modifiers and vice versa.

The addressing modes and address codes are described in more detail in the
"MNORD-500 CPU Refererce Menug!”. Otherwise, refer 10 Appendix F and G. Al
Cossin’z adaressing modes. foliowed by a short descrintion, are listed herz. The
fotowing notation (s used:

constant Integer or real constant

disp Displacement {absolute value}

diabel A data label

plabel A program label

ADDRI(label) An assembler notation for converting the value of a label to
a constant.

Rn Register number

Bi1 BI2 BI3 Bl4 BIn

BY1 BY2 BY3 BY4 BYn

H1 H2 H3 H4 Hn

Wi w2 W3 w4 Wn

F1 F2 F3 F4 Fn

D1 D2 D3 D4 Dn

R1 R2 R3 R4 Rn

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Local Addressing

B.disp Assembler selected format
B.disp:S Forced short displacement
B.disp:B Forced byte displacement
B.disp:H Forced half-word displacement
B.disp:W Forced word displacement

Local, Post Indexed Addressing

B.disp(Wn) Assembler selected displacement format
B.disp:B(Wn) Forced byte displacement

B.disp:H{Wn) Forced half-word displacement
B.disp:WI(Wn) Forced word displacement

Local Indirect Addressing

IND (B.disp) Assembler selected displacement format
IND (B.disp:B) Forced byte displacement

IND {B.disp:H) Forced half-word displacement

IND (B.disp:W) Forced word displacement

Local Indirect. Post indexed Addressing

IND (B.disp} {Wn) Assembler selected displacament format
IND (B.disp:B) (Wn)] Forced byte dispiacement

IND (B.disp:H) {(Wn) Forced half-word displacement

IND (B.disp: W) (Wn) Forced word dispiacement

Record Addressing

R.disp Assembiler seiected displacement format
R.disp:S Forced short dispiacement

R.disp:B Forced byte displacement

R.disp:H Forced half-word displacement
R.disp:W Forced word displacement

Pre-Indexed Addressing

Rn.disp Assembler selected displacement format

Rn.disp:B Forced byte displacement

Rn.disp:H Forced half-word displacement

Rn.disp:W Forced word displacement
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Absolute Addressing

dlabel
diabel: W

Absolute address (always 4 bytes)
Absolute address (always 4 bytes)

Absolute, Post Indexed Addressing

dlabel (Wn)
dlabei:WIWn}

Constant Operand

constant
constant :
constant :
constant :
constant :W
constant :F

constant :D

T momw

ADDR (diaben
ADDR (diabe!) : W
ADDR iplabel)
ADDR Iplabei) :W

Register Addrassing

Rn

Absolute address (always 4 bytes)
Abscluie address (always 4 bytes)

Assembiler selected constant format
Forced short constant

Forced byte constant

Forced half-word constant

Forced word constant

Forced real constant

Forced double real constant

The address of a data memuory iocation
The address of a data memory location
The address of a program memory locaticn
The address of a prcgram memory location

Register as operand
Bin, BYn, Hn, Wn, Fn, and Dn.

Note: the register symbol used must be of the correct type.

For Example:

BY WCONV BY2, Wdis correct, while BY WCONV W2, W4 is illegal.

When used as an index register {pre-indexing or post-indexing) only W is legal. R1,
... Rdislegal in all positions. The register names are reserved symbols.

Descriptor Addressing

DESC (operand) (Rn)

Alternative Area

ALT (operand)

The operand can be any general operand, except constant,
register, descriptor, and alternative area.

The operand can be any general operand, except alter-
native area, register, and constant.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

24

2.41

EXPRESSIONS

Expressions are made up of cperators and operands. The cperator conducts the
action which is to be performed upon the operands. An operand can have one of
the following data types:

! Integer (32 bits, 2's complement number)
R Real (64 bits, NORD-500 double precision)
S String (character string, maximum 80 characters)

Operators and Operand Data Types

The available operators, in order of increasing priority, are listed below:

|
Operand
Priority: Operator; Data Type: Descriptior:
1 OR i Logical or
XOR | Lcgical exciusive or
2 AND | Logical and
3 NOT | Logical negation {1's complement!)
4 < I, S Less than
4 < = IS Less than or equal to
4 = I,R,S Equal to
4 >< i,R,S Not equal to
4 > = I, S Greater than or equal to
4 > [, S Greater than
5 + | Addition
5 I Subtraction
6 * | Muftiplication
6 / | Division
6 MQOD I Modulo
6 SHIFT | Shift
7 Unary + I, R Unary plus
7 Unary — I, R Unary minus

In all cases where an integer and/or real operand is required, a string constant of
length 0-4 will be converted to an integer where the characters are represented by
their internal binary value, e.g., A = 10%. A string constant of length 5-8 will be
converted to a real value in the same manner.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2-12

In addition, an integer value can have one of the three following attributes:

A Absclute
P Program address
D Data address

No binary operator may have a program address on one side and a data address on
the other side of it. The following table shows which combinations of operands are
possible and what type the result has. Blank indicates that the combination is
illegal, whiie a horizontal line indicates a non-existent combination. The slash (/)
means operated on.

Operator: A/A A/P,D P D/A P.D/P,D

> > >

P.D P.D
P.D

>

/
MOD
SHIFT
Unary +
Unary —

%
>>rrr>»2>»>Pr>»>>Pp>>Db

In general, address arithmetic is allowed only for data addresses. If imported
symbols are used in an arithmetic expression, only one symbol may occur in each
expression, i.e., the difference between two imported symbols is not legal. With
program addresses, arithmetic is allowed only with the special symbols defined
above.

Note that address arithmetic, as program addresses, is permitted with the special
symbols defined above. For example, GO LABX + 3 is illegat while GO #PCLC+3

is legal. Because almost all NORD-500 instructions have variable length it is
strongly advised not to use constructs such as #PCLC + 3.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.4.2

Intrinsic Constants

Intrinsic constants are constants that are pre-defined or system-suppiied. The
following five intrinsic constant names may be used to refer to the locations in the
stack entry header.

PREVB 0 Saved B-register

RETA 4 Savedreturn address

SP 8 Stack pointer

AUX 12 System cell

NARG 16 Number of arguments supplied in call

The constant #ZEROP has a value of zero and is used as a program address.
The constant #ZERQD has a value of zero and is used as a data address.

MODULE EXTRA
SizZ: W DATA ELAB — #ZEROP

ELAB:
ENDMODULE

will place the size of the program part of the module in the data location SiZ.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.4.3

Intrinsic Functions

Intrinsic functions are functions that are pre-defined or system-supplied. A
function can have arguments, enclosed within parentheses and separated by
commas. This section describes the different intrinsic functions which are available
to you.

These are the location counter symbols:

#PCLC Program location counter
#DCLC Data location counter
#SCLC Stack location counter
#RCLC Record location counter

These functions return the current value of the location counters. #SCLC is used
when processing statements between STACK and ENDSTACK, and #RCLC when
processing statements between RECORD and ENDRECORD. When used in the
operand field of an instruction, a location counter symbol represents the address
of the first byte of the instruction. When used in the operand field of an assembier
directive (see Section 2.5), it represents the address of the first bvte of the current
data element. ror example:

W MOVE ADDR (#PCLC) R1

wW CATA 100, #DCLC +4
w BLOCK 100

The first instruction loads the R1 register with the address of the instruction itself.
The two following instructions define a descriptor with the described array
immediately following it.

When #SCLC is used inside 8 STACK-ENDSTACK pair it represents the current
stack displacement. When it is used outside a STACK-ENDSTACK pair it holds
the size of the last stack block defined. This means that it can be used directly as
the "'stack demand’’ parameter in the entry pointinstructions. For example:

STACK
PAR1A: W BLOCK 1 % ADDRESS OF PARAMETER ONE
PAR2A: W BLOCK 1 % ADDRESS OF PARAMETER TWO
ENDSTACK
ROUTX: ENTS #SCLC % ENTER STACK

These statements define a stack block and insert the correct stack demand in the
ENTS instruction.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

#RCLC is used in a similar way for records. #SCLC is initialized to 20 at the start
of a new stack definition while #RCLC is initialized to zero at the start of a new
record definition.

#NCHR

The function #NCHR takes a string as its only argument and returns tne length of
the string. The length is returned as an absolute integer value. For example:

XSTR: SEQU 'STRING OF CHARACTERS’
BY DATA #NCHR {XSTR} ,XSTR

assembles a string preceded by its length,

#NARG

The function #NARG, which takes no arguments, returns the number of
arguments supplied in the call to the macro currently being expanded. If used
outside a macro its value is zero.

#DATE
To read the current date and :ime the function #DATE can be used. 11 is a

function of no arguments and returns the current date and time in a double word
as follows:

Bits 63-48, 16 bits, Year
Bits 47-40, 8 bits, Month
Bits 39-32, 8 bits, Day
Bits 31-24, 8 bits, Hour
Bits 23-186, 8 bits, Minute
Bits 15-8, 8 bits, Second
Bits 7-0, 8 bits, Unused

This function is useful in keeping track of different versions of a program.
#.0G2
The function #.0G2, which takes an integer value as argument, returns the

logarithm to base two of the argument. This funciton can be useful when used
with the instructions ENTB, GETB and FREEB.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

244

Expression Syntax

expression =

ifact =

ineg =

ref =

relop =

sum =

factor=

primary =

iconstant =

function=

Ifact $(("OR", "XOR"") lfact);
Ineg $("AND’" Ineg);
["NOT"] rel;
sum relop sum;
DS G A G VI S
factor $((""+" /" —"") factor);
primary $(("*" /7 "/ / "MOD’ ¢ SHIFT”) primary);
[s =)
i {"" expression '")""/
identifier/
string-constant; integer-constant’ real-constant.

iconstant. ifunctionl;

"PREVB/ "RETA” "SP" ' "AUX") "NARG"
"wZERQP", "#ZERCD';

“#MNARG

“#NCHR™” (" expression)"/

“#PCLCY, "#DCLC"/ "#SCLC”/ "#RCLC"/
"#DATE",

“#LOG2” " expression);

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5

DIRECTIVES

Directives specify attributes of the generated NRF (NORD Relocatable Format),
allocate data storage, and preset constant data. See Appendix A for a summary of
directives.

This section describes all available directives. The format of a directive is similar to
that of an instruction.

(labelj directive-name [operands]

or

[label] data-type, directive-name {operands]
The label, if present, is assigned the value of the current program or data location
counter depending on which directive follows it. If a directive has several labels, ali

but the last are always assigned the value of the current program location counter.

The data type specifiers used for directives are the same as those used for
instructions. The directive names are not reserved symbols.

The operands, if any, are separated by commas ard have different formats for
each individual direcuve.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.1

25.1.1

2.5.1.2

Declaration and Definition Directives

MODULE and ENDMODULE

A NORD-500 assembly program consists of one or more modules which are
delimited by MODULE and ENDMODULE. The formatis:

MODULE [module-name [,” priority [*,” language-code]]]

statements

ENDMODULE [modute-name]

The module-name, which may be any legal identifier, is included in the page
heading of the assembly listing. If specified, the name in the ENDMOODULE
directive must correspond tc that in the matching MODULE direcrive. Except for
these two functions the moduls-name is ignored by the assembler.

If soecified, the priority must be an integer constant in the range 0-255. This value
is cutput to the object code as the first of the two data bytes following the BEG
control byte. The defauit value is zero.

The third parameter, language-code, is output as the second of the two data bytes

following the BEG control byte. It must be an integer constant in the range 0-255.
Values are: 0, assembly code; 1, FORTRAN; 2, PLANC. The default value is zero.

IMPORT-P and IMPORT-D

These two directives are used to make external data accessible within the current
module. The format is:

IMPORT-P identifier $ (”,” identifier)
IMPORT-D identifier $ (""" identifier)
An identifier which is mentioned in an IMPORT directive must not be defined in

the current module. IMPORT-P is used to import program addresses (entry points)
while IMPORT-D is used to import data addresses.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.1.3

2514

2515

EXPORT

This directive is used to make addresses defined in the current module accessible
to other maodules. The formatis:

EXPORT identifier $ ("',” identifier)

An identifier that is mentioned in an EXPORT directive must be defined in the
current module. Both program addresses and data addresses can be EXPORTed.

MAIN

The MAIN directive, which has the format:
MAIN identifier
specifies the main entry point of a program. The identifier must be defined as a

program address in the current module. The identifier nead not be EXPORTed.
Only one main entry point can be specified.

LiB

The LIB directive has the format:

LIB identifier $ (" identifier)
The current module will be loaded only if one or more of the identifiers mentioned
in a LIB directive is undefined (in the loader table). Otherwise the entire module is

skipped. Both program aadresses and data addresses may be used as library
symbols.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.1.6

2.5.1.7

2-20

ALIAS

The ALIAS directive has the form:
identifier """ ALIAS string-valued-expression

This directive defines the external representation of the symbol, i.e., the string
which is output to the object stream. The use of this directive is to generate names
that are syntactically illegal in the NORD-500 assembly language but are used by
other language processors {e.g., operator names in PLANC). It can also be used to
generate names which the user of other language processors is unable to
duplicate. For example:

ROUTINE CLOSE
CLOSE: ALIAS "+ + + CLOSE’
CLOSE: ENTD

ROUTINE and ENDROUTINE

A subroutine starts with a ROUTINE directive and ends with an ENDROUTINE
directive. The ROUTINE directive is followed by a list of entry points. The entry
points will be global labels while all other symbols defined within a ROUTINE —
ENDROQUTINE pair will be local to the subroutine. A local symbol cannot have the
same name as a global symbol. The ROUTINE and ENDROUTINE directives do not
generate any code. The ROUTINE and ENDROUTINE directives may not be
nested. For an example of a subroutine refer to Appendix E.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.1.8 STACK and ENDSTACK

These directives are used to declare data in the form of a stack entry. Data
declared this way may be addressed through the B-register. A stack declaration
can have one of the two forms:

label] STACK FIXED

data allocation directives

ENDSTACK
or
STACK

daia allocation directives

ENDSTACK

The first form is used for data allocated statically in the data memory, while the
second form is used for data allocated dynamically on a stack. The first form
allows initialization of data, while the second form does not.

The optional label is assigned the address of the first byte and is used when
referring to the stack block {e.g., in the ENTM and ENTF instructions).

A label occurring inside the stack definition is assigned an absolute value
corresponding to the displacement from the start of the stack block currently being
defined. This displacement is initialized to 20, leaving 20 bytes (5 words) for the
stack header.

The first five words constitute the stack header. These words may be accessed by
the following standard names.

PREVB Saved B-register

RETA Saved return address

SP Stack pointer (next B)

AUX System cell

NARG Number of arguments supplied in call
ND-60.11302

Scanned by Jonny Oddene for Sintran Data © 2011

If FIXED is specified, these words are initialized to zero at load time.

The stack location counter (address relative to the start of the current stack block)
can be referenced as #SCLC. When referenced outside a stack definition
#SCLC holds the size of the last stack block defined, thus it can be used directly
as the "'stack demand’ argument in, for example, ENTS.

An example of a routine using dynamically allocated data can be found in Exampie
2. The following is an example of a routine using statically allocated local variables:

ROUTINE CRLFX

CRLSS: STACK FIXED
LINENO: W DATA 1
ENDSTACK
CRLFX: ENTFN ENTF CRLSS, 0

BY COMP2 B.LINENO, 72; IF < GO CR1
CALLG NEWPAGE, 0; W SET1 B.LINENO; RET

CR1: CALLG NEWLINE, 0; W INCR B.LINENO; RET
ENDROUTINE

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.1.9

2-23

RECORD and ENDRECORD

RECORD and ENDRECORD are similar to STACK and ENDSTACK except that no
stack header is allocated. Therefore, the displacement of the first variable is zero.
Data declared with RECORD and ENDRECORD may be accessed through the
R-register. The symbol #RCLC is called the record location counter and is used in
the same way as #SCLC is used with STACK and ENDSTACK.

A record definition may occur inside a stack definition and vice versa. Stack and

record definitions may not, however, be nested.

Example 1, Fixed Record:

RLOC:
RX1:
RX2:

RECORD FIXED
W DATA 1,2
DESC 10, LXX1
ENDRECORD

R: = ADDRI(RLOC)
W1:=R.RX1
W2: =DESCIR.RX2!(R1)

Example 2, Symbol Table Element:

INAME:
ITYPE:
ISCOPE:
IMISC:

XLOOP:

Scanned by Jonny Oddene for Sintran Data © 2011

RECORD

W BLOCK 1
W BLOCK 1
W BLOCK 1
W BLOCK 1
ENDRECORD

R:=B.ELEMENT

W COMP2 R.INAME,B.SNAME
[F = GO FOUND

W ADD2 B.ELEMENT, #RCLC
GO XLOOP

ND-60.113.02

2.5.1.10

EQU and SEQU

These directives are used to assign a value to an identifier. They have the form:

identifier ;" EQU expression
identifier """ SEQU string-valued-expression

For both directives the expression in the argument field must be evaluatable in
pass one.

EQU assigns the vaiue in the argument field to the identifier in the label field. The
identifier gets the same type as the expression value.

SEQU is similar to EQU except that it always performs a string assignment, while
EQU converts a string into an integer constant before the assignment is per-
formed.

ldentifiers defined with EQU or SEQU cannot be redefined.

Examples:
INTY: EQU 1018 % INT1 GETS VALUE 1018
INTZ2: EQU ‘A’ % INT2 GETS VALUE 1018
P EQU 3.141592€536 “o DOUBLE PRECISION REAL
STR1: SEQU A’ 9% STRING VALUE: A

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.2

2.5.2.1

2522

Data Allocation Directives

BLOCK

The BLOCK directive, which has the format:

[label} data-type BLOCK expression
allocates a block of data memory. The expression in the argument field specifies
the size of the block in units of the data-type. All data-types are valid. The block is
initialized to all zeros at toad time.
If this directive is used in stack or record definition without the FIXED attribute, no
memory is allocated, but the #SCLC or #RCLC is updated to reflect the amount

of space needed at runtime.

The expression in the argument field must result in an absolute value and it must
be evaluatable in pass one.

DATA and PROG

These directives are used to assemble data constants in the data memory (DATA)
or the program memory (PROG). The format is:

[label ! data-type DATA expression $(”,”expression)
label] data-type PROG expression ${"'," expression)

All data types are valid. However, two special cases arise: Bl DATA (or Bl PROG)
and BY DATA f{or BY PROG). BY DATA is special only when an argument is a

string valued expression.

Bi DATA allocates memory in units of bytes and inserts the specified bits starting
with the most significant bit {bit 7). Unused bits are set to zero. For example:

Bl DATA1,1,0,0,1,0,0,1,1,0,1
causes the two bytes 311B and 2408B to be assembled in the data memory.

When BY DATA operates on an argument which represents a string, this string is
not converted to an integer value but assembled byte for byte into the memory.

For Example:

BY DATA 'NORD-500 ASSEMBLER’
BY DATA 158B, 128, 158, 128, ‘$’ % CR-LF, CR-LF, $

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.2.3

2524

DESC

The format of the DESC directive, which is used to allocate a two word array
descriptor, is:

[label] DESC [expression "',"" expression]
The first and second expression corresponds to the first and second word of the
NORD-500 hardware array descriptor. If the expressions are omitted. two words,

which are initialized to zero at load time, are allocated in the data memory.

If this directive is used in a stack or record definition without the FIXED attribute,
the two expressions must not be specified.

When used without arguments, the DESC directive is equivalent to W BLOCK 2 or

W DATA 0, 0 but may be preferred if the allocated space is to be used for
descriptor storage.

ARRAY and STRING

These direcuvas, wnich have the tormat:

flabel] data-type ARRAY expression
label] STRING expression

allocate a block of data memory immediately preceded by a descriptor. The

ARRAY directive can be described in terms of the DATA and BLOCK directives as
follows:

label] w DATA expression, #DCLC +4
data-type BLOCK expression

All data types are valid. The block is initialized to zero at load time.

The directive STRING is equivalent to BY ARRAY. This form may, however, be
preferred when used with the NORD-500 string instructions.

The expression in the argument field must evaluate to an absolute value and be
evaluatable in pass one.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.25

2.5.3

2.5.3.1

2-27

ARRAYDATA and STRINGDATA

These directives, which have the format:

label] data-type ARRAYDATA expression $ ("',” expression)
label] STRINGDATA expression $(”,” expression)

are used to assemble constants in the form of arrays into the data memory. The
data constants are assembled in the same way as for DATA. The block of
constants is, however, preceded by a descriptor with the correct iength infor-
mation filled in. All data types are valid.
The directive STRINGDATA is equivalentto BY ARRAYDATA.
Example:

W ARRAYDATA 1,2,3,4,5,6

IS equivalent to:

DESC 6. #DCLC -+ 4
W DATA 1,2,3,4,5,56

Location Counter Control Directives

ORG-P and ORG-D

These directives set absoiute origin in the program memory (ORG-P) or the data
memory (ORG-D). They have the form:

llabel] ORG-P [expression]
[label] ORG-D jexpression]

The expression in the argument field must evaluate to an absolute value. It must
be evaluatable in pass one. If present, the label in the label field is assigned the

same value as the expression in the argument field.

If no argument is given, then relative assembly is resumed at the last relative
address before absolute mode was entered.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.5.3.2

2.5.4

BOUND-P and BOUND-D

The format of these directives is:

label] BOUND-P expression
[label] BOUND-D expression

The expression in the argument field must result in an absolute value which is a
power of two. The program location counter { #CLC) for BOUND-P, or the data
location counter { #DCLC) for BOUND-D is set to the next multiple of the value in
the argument field. If the location counter aiready has a value which is a multiple
of the value in the argument field, no action is taken.

These directives operate only on the assembly iocation counters. Therefore, if they
are not used together with the ORG directive, the module must be loaded starting

at a multiple of the maximum boundary size used in the module in order to ensure
correct operation.

Miscellaneous Directive

MESSAGE

The specified message will be cutput by the icader when :ne ovject fiie is loaded.
Message has the form:

MESSAGE expression

The expression in the argument field must evaluate to an absolute value and be
evaluatable in pass one.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6

2.6.1

2.6.1.1

2.6.1.2

COMMANDS

A command consists of a dollar sign {$) followed by a command name. Command
names are not reserved identifiers. Command parameters have different formats
and are described for each particular command. See Appendix B for a summary of
commands.

Listing Control Commands

$LIST and $NOLIST

The fisting options which can be specified interactively with the LIST and NO-LIST
commands (refer to Section 3.5) can be specified in the text of an assembly
program through the $UST and $NOLIST commands. Refer to Section 3.5 for a
descrintion of the argument format and each individual lisiing option.

STITLE

The title command is used to define a title string which will be included in the page
headings of the assembly listing. The title is specified as a string constant
following the $TiTLE command.

For Example:

$TITLE 'BAS!C /0 ROUTINES’

causes the specified string to be included in the second line of the page heading,
after the module name (if any).

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2-30

2.6.1.3 $EJECT and Form Feed

A page eject in the assembly listing can be obtained in several ways:

— After a specified number of lines have been printed on the same page, the
assembler automatically performs a page eject. The page size can be speci-
fied with the LINES command (see Section 3.3).

— If a source line contains one or more form feeds (ASCIl 14B) a page eject is
issued before this line is listed. If used within a macro definition, a form feed
character causes a page eject. A page eject is not performed when the
macro is expanded.

— The command $EJECT, which has no arguments, causes a page eject to be
issued. Used within a macro definition the $EJECT command is ignored, but
the page eject is performed when the macro is expanded.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2-31

2.6.2 Conditional Assembly Commands

2.6.2.1 $IF, $ELSIF, $ELSE and $ENDIF

Conditional assembly commands give you the possibility to conditionally includz or
ignore blocks of source cocde in the assembly process.

The general form of a conditional block is:

$IF EXPRESSION % START OF CONDITIONAL BLOCK
$éLSlF EXPRESSION % ZERO OR MORE $ELSIF COMMANDS
$ELSE % OPTIONAL $ELSE COMMAND
$ENDIF % END OF CONDITIONAL BLOCK

The expression ./mict s the argument of the $1F arnd $ELSIF command is
evaiuated. If the resulung vaiue is nonzero {TRUE), the source code between the
command and the next $ELSIF, $ELSE or $ENDIF command is assembled. If the
resulting value is zero {FALSE) the source code is ignored.

The source code included between a $IF command and its required associated
$ENDIF command is defined as a conditional block. A conditional biock may
contair any number (including zero} of $ELS|F commands, but oniy one $ELSE
command. No $ELSIF command may appear between a $ELSE command and its
matching $ENCIF command. Only the source code foliowing the first satisfied
condition in a conditional block is assembled.

Conditional blocks may be nested to any desired level.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6.3

2.6.3.1

2-32

Source File Library Commands

$INCLUDE and $SECTION

The format of the $INCLUDE command is:
$INCLUDE file-name {",” section-name]

where section-name is syntactically equivalent to file-name. If only the file-name is
present, the text of the specified file is inciuded in the source text.

If the section-name is present, only the named section, located on the specified
file, is included. Sections are defined by means of the $SECT|ON command which
has the format:

$SECT|ON section-name
The text which comprises the section starts with the statement following the
$SECTION and ends with the next $SECTION or $EOF command lor at
ena-cf-file). If the specified secuon-name does nct exist on the specified file, no

textisinrcluded.

If = fu2 corianng section defiritions i1s inciuaad as & whete Ino section-name
Feain the SINCLUDE command). ine secticn definiticns are ignerad.

spel

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6.4

2.6.4.1

2.6.4.2

2-33

Macro Definitions and Macro Calls

IMACRO

The first statement of a macro definition must be a $MACRO command. The
$ MACRO command is of the form:

$MACRO macro-name ["'{"" [formal-parameters] "'}"']

where macro-name is the name of the macrc. The macro-name is any legai
identifier. The name cannot be used as a label anywhere else in the program.
Macros are not local to modules but exist throughout the entire file on which they
are defined. Formal-parameters are a list of identifiers separated by commas.
These identifiers can be used elsewhere in the program without conflicts of
definition. When a formal-parameter is referenced in the macro body it must be
enclosed within double quotes (e.g., "PAR1").

$ENDMACRO

The firal statement of every macrs defimition must be a $ENCMACRD commana
of the form:

$ENDMACRO {macro-name]

where macro-name is an optional argument and is the name of the macro. being
terminated by the statement. If specified, the name in the $ENDMACRO
command must correspond to that in the matching $MACRO command. Specifi-
cation of the macro-name in the $ENDMACRO command permits the assembler
to detect missing $ENDMACRO commands or improperly nested macro
definitions.

An example of a macro definition is shown below:
$MACRO CHECK (GVX, LABX)
W1: = IND (B.GVARIDX)
W COMP2 IND (B.GVAR) {R1), "GVX"

IF>< GO "LABX”
$ENDMACRO CHECK

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6.4.3 S$EXITMACRO

In order to implement alternate exit points from a macro (particularly nested
macros), the $EXITMACRO command is provided. $EXITMACRO terminates the
current macro as though a $4ENDMACRO command was encountered.
SEXITMACRO bypasses the complication of conditional nesting and alternate
paths. For example:

$MACRO XMK (NN, AA, BB)

$IF "NN"” =0 % START OF CONDITIONAL BLOCK
$EXITMACRO % EXIT DURING CONDITIONAL BLOCK
$ENDIF % END OF CONDITIONAL BLOCK
$ENDMACRO % NORMAL MACRO EXIT

In an assembiy where NN = 0, the $EXITMACRO command terminates the macro
expansion.

When mazros are nested, $EXITMACRO causes an exit 10 the next higher ievel.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6.4.4

Macro Calls

A macro must be defined prior to its first reference. A macro call may occur
anywhere an instruction, directive, or command is legal. Macro calls are of the
form:

macro-name ["{"" [actual-parameters] "')"']
where macro-name is the name of a macro defined in a preceding $MACRO
command. The actual-parameters are a list of values, separated by commas,

which replace the formal-parameters in the macro definiticn.

if an actual parameter contains a separating character {e.g., comma or right
parenthesis) it can be enclosed within angle brackets (< >).

For Example:
CHECK (KIND (B.XDJ)>, XLABEL}

This call causes the general operand !IND (B.XDJ) to replace all occurrences of
“"GVX'in the macro CHECK {defined above).

An exclamation mark !!) can be used as an escape character. 1t1s used primarly to
cass an angle bracket as part of an actwua! paramerer. To pass an exclameancn mark

capies 11
NTILE o

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6.4.5

2-36

Macro Nesting

Nested macro calls, where the expansicn of one macro ConNiains one or more
macro calls, causes one set of angle brackets to be removed from an argument
with each leve! of nesting.

Recursive macro calls are permitied. As an example, consider 2 folivwing pair cf
macrcs winch evaluate the factorial function {as a consiant valuel:

$MACRO FACTIN)
XFACTI "N, 1)
$ENDMACRO FACT

$MACRO XFACT(N,HOLD)

$IF "N =0

W DATA "HOLD”
$ELSE

XFACT('N” — 1, <U'N”P*("HOLD” 1>
$ENDIF

$ENDMACRO XFACT

MNote the use cf parentheses and angle brackers in the recursive call or XFACT.
The parentheses are necessary in orger 1o obtain the correct vaiug because the

o
)
>
«2
e

argurrent 18 passed a3 an sxpression, ndl 3s an 2veluzied \@es.
Crucseis ™must D us2dd Decause (T8 EXDIESSICN COniaing righi parsihegis. Al
exciamauncn mars in front of 2ach nighi parentheses s nyut sutficient because ihs

argument "HOLD" coniains right parentheses.

If macro definttions are nested {that is, a macro definition is entirely contained
within the definition of another macro) the inner macro is not defined as a callable
macro until the outer macro has been called and expanded.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6.4.6

Special Forms: #NARG, “LABEL"” and "MNQ”

If more arguments appear in the macro call than in the macro definition, the
excess arguments are ignored. If fewer arguments appear in the macro call than in
the macro definition, missing arguments are assumed to be null {consist of no
characters).

The intrinsic function #NARG (see Section 2.4.3} can be used 1o test for the
presence or absence of an argument

If a label is placed in the label field of a macro call, this label is not defined before
the call, but is passed as a special kind of argument. The label can be referenced
by the special formal parameter name “"LABEL" which expands to the label name
followed by a colon (:}. This enables the user to determine exactly where in the
macro body the label definition is to take place.

For Example:

$MACRO BES (TYPE, SIZE)
“TYPE" BLOCK “‘SIZE”

"LABEL” BY BLOCK O

$ENDMACRO BES

s one possibie definition of the common macro BES (Biock Ending Svmboli. A
typical cell might be:

BLK1: BES(BY, 103)

To create unigue symbols in a macro expansion the special form "MNQO’ (macro
number) can be used. "MNO’" expands to a five digit decimai number which is the
serial number of the current macre call. To provide several unique symbols within
the same macro "MNO” is concatenated with different strings. if the first
character of the generated symbol is a question mark, the symbol will be invisible,
i.e., not listed in the symbol table dump. Symbols generated in this way are not
different from other symbols used in the assemtler. They may be referenced
outside the macro if desired. As an example of generated symbois consider:

$MACRO GOIFWRONG
W COMP2 B.EXPECTED, B.ACTUAL
IF = GO ?A”MNO”
W MOVE B.EXPECTED, FPART?
W MOVE B.ACTUAL, FPAR2
GO ERRFATAL:H
?A”MNO”
$ENDMACRO

The second time this macro is called the label ?A00002 is generated.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

2.6.5

2.6.5.1

2.6.5.2

2-38

Miscellaneous Commands

$PACK and $ALIGN

These commands control the packing of data allocated in the data memory.

If $ALIGN is specified, half-word data is aligned on half word boundaries (0, 2,
4, ...) and word data is aligned on word boundaries (0, 4, 8, ...). Descriptors le.g.,
in ARRAY and ARRAYDATA) are also aligned on word boundaries.

If $PACK is specified, no alignment is performed.

The default mode is $ALIGN.

$EOF

The $EOF command signals the end of the source file or end of inciuded file {see
$INCLUDE). The effect of this command is simulated when an end of fiie
indication is received from the file system.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

ASSEMBLER OPERATING PROCEDURE

To start the assembler from SINTRAN il one types the following:
@N500-ASSEMBLER Ksource> <list> ... etc. | er

NORD-500 ASSEMBLER 2.5, 19 November 1979

$

The command processor 1S now ready to accept commands. Whenever the
command processor expects the operator to enter a command, it outputs a dollar
sign {$). A command consists of a command name followed by zerc or more
parameters. Several commands, along with all required parameters, may be
written on the same line.

The command name consists of one or more parts separated by hyphens (""-"'}.
Each part of the command name may be abbreviated as long as the command can
be distinguished from all other command names.

The standard editing characters are availabie whiie typing commands.
The coilection of parameters is done in a siandarized way as follows:

- Parameters are separated by eiiner 3 comma or any number of spenes or a
combination of comma and spaces.

— Parameters may be null in which case a default value is assigned.
— When a parameter is missing {as opposed to null} it is asked for, and the
command processor expects you to supply the required parameter glus more

parameters if you wish.

— When a parameter syntax error is detected, an error message is printed and
the parameter s asked for.

— Excess parameters are ignored.

Commands can be given directly to the SINTRAN Il command processor by
preceding them with an @ sign, In this case commands to the local command
processor following the SINTRAN [l command are ignored.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

3.1

3.2

3.3

3.4

3.5

HELP <command name>

The HELP command lists available commands on the terminal. Only those
commands that have <command name> as a subset are listed. If <command
name> is null then all available commands are listed.

EXIT

The EXIT command returns controf to the SINTRAN 11l command processor.

LINES <lines per page>

This command enables the user to specify the number of iires per page on the
assembly listing.

ASSEMBLE <source file> </ist file> <object file>

This command assembles the specified <source file> with listing on <list
file> and object output to <object file>. If no list file is specified, no listing is
produced, but error messages are printed on the terminal. If no object file is
specified, no object output is produced. The default file types are: :SYMB, :LIST,
and :NRF.

LIST </ist directives> ...
NO-LIST <list directives> ...

These commands are used to set/reset various internal flags which control the
format and extent of the assembly listing. A LIST command with an empty
parameter will cause the listing mode to be set to its default {initial) value. A
NO-LIST command with an empty parameter will cause all output, except error
messages, to be suppressed.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

The folicwirg are iegal list directives:

HELP <command name>
Lists available list directives on the terminal. Only those iist directives that
have <command name> as a subset are listed. {f <command name> is null
then all available list directives are listed.

GLOBAL-SYMBOLS

Conirols the listing of the "globai symbols” part of the symbol table. Global
symbois are those symbols nct defined within any ROUTINE —
ENDROUTINE pair. Defaultis LIST.

LOCAL-SYMBOLS
Controls the listing cf the "local symbois™ part of the symbol table. A
symbol is called local if it is definred within @ ROUTINE - ENDROUTINE pair

and is not mentioned as an entry point in @ ROUTINE statzment. Default is
NO-LIST.

LOCATION-COUNTER

Controis e listing of the assembly locanon countar fieid. Tre location
counter s listed gs aneteven digit ocial number. Defauitis LIST.

Controls the listing of the generated binarv code. The gererated code will be
listed as severai fields containing octal numbers. Defaultis NO-LIST.

MACRC-EXPANSIONS

Controls the listing of macrc expansions. With this directive the macro
expansions are listed out. Defaultis NO-LIST.

CROSS-REFERENCE-TABLE
Controls the generation of and printing of an alphabetically sorted
cross-reference table at the end of the assembly. The cross-reference table
consists of all the user defined symbols and for each of them a list of line

numbpers. The number of a line where the symbol 1s defined is followed by an
asterisk (7). Defaultis NO-LIST.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

3.6

3.7

PRINT-MACRO <macro name> <output file>

This command prints the currently defined macros on the specified output file.
Parameters are named P1, P2, etc. The default output file is the terminal and the
default file type is :SYMB. If <macro name> is null, all macros are printed.
Otherwise only the specified macro is printed.

TABLE-SIZES <size parameter>

This command enables the user to change the size of any of the tables allocated in
the assembler’s dynamic work area. If the new table size is accepted, the old size is
printed on the terminal and the assembler is initialized.
The possible size parameters are listed below.
HELP<command name>
Lists available size parameters on the terminal. Only those size parameters
that have <command name> as a subset are listed. If <command name> is
null then &' available size parameters are hsted.

MACRO-TABLE<macro table size>

Specifies the size of the macro table. This area is used for storing macro
bodies and for the macro/inciude stack.

SOQURCE-LINE-BUUFFER<source line buffer size>

This command can be used to avoid the SOURCE LINE BUFFER TOO
SMALL error message.

OBJECT-CODE-BUFFER<object code buffer size>

This command can be used to avoid the OBJECT CODE BUFFER TOO
SMALL error message.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

4.1

ASSEMBLY LISTING FORMAT

The assembly listing consists of three parts for every module: the assembled
program, the symbol table of the assembly and an alphabetically sorted
cross-reference table. Every page of the listing starts with a page heading. A
description of the format follows. Appendix E contains an example of the assembly
listing format.

PAGE HEADING

The first four lines of a page constitute the page heading. Before the heading lines
are printed, the listing device is advanced to a new page. If the listing device is the
terminal, a blank line is printed instead of advancing it to the next page. The
heading consists of the foliowing fields:

— Assembier name and version number

— Currentdate and time

— Page number

— Tne rame of the module currently being assembied followed by the titie
string if a titie has been specified

— Two blank lines

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

4.2

PROGRAM LISTING

The program listing consists of several fields on each line. If an instruction has
more than one operand specifier or if several instructions are written on the same
source line, then the generated code may require several lines on the listing. The
following description assumes that all listing options are enabled. Refer to Section
3.5 for an explanation of the listing options.

— Source line number

This field is blank if the line was not read from the source input file.
— Current location counter

This field is blank if the operation does not change the location counter or if
the line is a binary extension line, i.e., the location counter is cnly printed at
the start of each instruction. The location counter is printed as an eleven
digit octal number. It is preceded by a letter specifying which of the location
counters is printed: P {Program location counter); D (Data location counter);
S (Stack location counter); R (Record location counter).

- Generated cede

Tris fieid is divided into several suifieids: cperation code {8 or 16 bits), prafie
coerand code number 1 (if ALT, 8 oits), prefix operand ¢ace tumider 2 00
DcSC, 8 bits), cperand code lif general opsrand, 8 Dits! ang adaress
displacement {all types except S). If an imported guantity is referenced, it is

prirnited in symbolic form plus the displacement.

— Source code

— Error messages
I¥ one or more errors are detected in a line, the error message(s) are output
following the line in error. The error message is precedsd by four asterisxs
("***=""} the name of the current source file, the last label encountered and

the displacement {in lines) since the last label. At the end of the entire listing
the following two lines are printed:

— Number of errors detected during the assembly
— CPU time used.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

4.3

4.4

SYMBOL TABLE

When listing the symbol table, the title is set to "SYMBOL TABLE"'. The symbols
are listed in alphabetical order. The fields are as follows:

— Symbol name (maximum 16 characters)

— Symbol type. The types are:

1 U = Undefined

2 W = Integer (Word), D = Doublereal, S = String
3 A = Absolute

4 P = Program address

5 D = Data address

6 M = Main entry point

7 | = Imported

8 E = Exported

9

L = Library symbol

— Symbol value. The value is given in the following formats, depending upon
the data type:

Integer: Eleven digit octal number
Real: Two eleven digit octal numbers. separated by space
String: A cheracter string

— If the symbol has an alternative name (an ALIAS), this name is printed
following the vaiue.

CROSS-REFERENCE TABLE

When listing the cross-reference table the title is set to "CROSS-REFERENCE
TABLE". The cross-reference table is an alphabetically sorted list of all symbols
used in the program. Each symbol is followed by a list of line numbers. The line
numbers of the lines where the symbol is defined are followed by an asterisk (*). If
a symbol name is used more than once (as local symbol), a separate list of line
numbers is given for each version of the symbol.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX A

SUMMARY OF DIRECTIVES

MODULE [module-name [’,” priority
["",” codel]]

Define start of module. The default value
for priority and code is zero.

ENCMODULE module-name]

Define end of module. The name must

be the same as in the matching
MODULE.

IMPORT-P identifier-list Import external routines

IMPORT-D identifier-list Import external data.

EXPORT identifier-list Exportinternal routines or data.

MAIN identifier Define main entry point.

LIB identifier-list Define library symbols.

identifier """ ALIAS string Define alternarive externai representa-

tion.

ROUTINE idenufier-iist

Start of subroutine with iccal svmizols.

ENDROUTINE End of subroutine.
STACK [FIXED] Start of stack definition.
ENDSTACK End of stack definition.

RECORD [FIXED |

Start of record definition.

ENDRECORD

End of record definition.

data-type BLOCK size

Allocate block in data memory.

data-type DATA data element list

Allocate constant data in data memory

data-type PROG data element list

Allocate constant data in

memory.

program

DESC [imit ", address]

Allocate descriptor

data-type ARRAY size

Aliccate storage preceded by array desc-
riptor.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

STRING size Same as BY ARRAY.

data-type ARRAYDATA data-element- | Allocate constant data preceded by array

list descripter.
STRINGDATA data-element-list Same as BY ARRAYDATA.
ORG-P origin Set absolute program origin.
—
ORG-D origin Set absolute data origin.
BOUND-P base Advance program location counter to

next multiple of base.

BOUND-D base Advance data location counter to next
multiple of base.

MESSAGE Output message string to object code

L

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX B

SUMMARY OF COMMANDS

$LIST listing-options

Enable listing options.

$NOLIST listing-options

Disable listing options.

listing-options:
GLOBAL-SYMBOLS
LOCAL-SYMBOLS
LOCATION-COUNTER
GENERATED-CODE
CROSS-REFERENCE-TABLE

Global symbols in symbol table.
Local symbols in symboi table.
Location counter field.

Code fields.

Cross-reference table.

$TITLE title-string

Define title string. Aiso performs
page eject.

$EJECT

Page eject.

$IF expression

Conditionat assembly.

$ELSIF expression

0 = FALSE, »<0 = TRUE.

$ELSE Optional $ELSE commaind.
$ENDIF End of conditional block.
$INCLUDE file-name [, section-name] Include source file.

$SECT|ON section-name

Define section.

$MACRO macro-name ["'{"" parameters’}’’]

Start of macro definition.

$ENDMACRO [macro-name]

End of macro defintion.

$EXITMACRO immediate macro exit.
$PACK Pack data elements.
$ALIGN Align data elements.
$EOF End-of-file.

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX C

RESERVED SYMBOLS

The symbols listing in this appendix are reserved symbols and may not be
redefined by the user.

B D1 ALT ADDR #DATE #ZEROP
D D2 AND DESC #DCLC #ZEROD
F 03 AUX NARG #.0G2
H D4 BIT RETA #NARG
R F1 BI2 #NCHR
S F2 BI3 #CLC
W F3 B4 #RCLC

F4 BY1 #SCLC

H1 BY2 PREVB

H2 BY3 SHIFT

H3 BY4

H4 IND

OR MOD

R1 NOT '

R2 XOR

R3

S

sP

W1

w2

W3

w4

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX D

INTRINSIC CONSTANTS AND FUNCTION SUMMARY

Constant Value

PREVB
RETA
SP

AUX
NARG
#ZERGCP
#ZEROD

—
O O N s O

Function

#PCLC
#DCLC
#SCLC
#RCLC
#NCHR (string)
#NARG
#DATE
#L0OG2 linteger)

Description

Saved B-register

Saved return address

Stack pointer

System ceil

Number of arguments supplied in call
Program address zero

Data address zero

Description

Program location counter

Data location counter

Stack location counter

Reccrd location counter

Number of characters in siring

Number of arguments in current macro call
Current daze and ime {doutis word)
Logarithm 10 base 2

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX E

MODULE EXAMPLE LISTING

This appendix shows the output listing from Example 1. The following options
were enabled during the assembly.

LOCATION-COUNTER
GENERATED-COLE
GLOBAL-SYMBOLS
LOCAL-SYMBOLS
CROSS-REFERENCE-TABLE

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

ADVLS WYVHDOHd NIVW HLIM .dYV MOVIS FLVILINI

TATAVIYVA TVEY 3NO

Y0d JIVdS HYVI0HAd

0°f SY 99 INIJ3d

0'¢€ SY Vv ANTJAAA
NOTLINISAEd MOVIS J0 IYVIS

NHNIaY
HILAWYHYd "€ NI J¥0LS
LOOHIUYNDS IANVL

aav anNv gyvnos

HALIWVHVd ¢ avol
JYVNDS

HILAWYYYd L dVOTl
D AR UITNA)

ONINNIDHH VIYVY VIVdJ J3XId
HLTIM UNILNOHENS YHLNA

" ‘2Tt
HILAWYHYd L 40 SSH¥AQV
NOTLINTAAQA AOVLIS A0 ILHVIS

(Cexc¥Vd + ZxxlYYd)IUDS =

LNIOd XYLNZ NIVW SITJIOIdAS
dINAOW 30 IWYN

YR IR oR R BR

R BR ¥R wR R R Bl

BRI BR

wR B BR WR

¥
7

AOVISANA

L 3007149 4
0'h Viva J
0°¢ vivad 4

JdXTd HOVLS

WYYD0Ud NIVW

ANTILNOHANA

13y

(EYVdY "d)ANT := 24
24 1HDS 2d

Ld‘2d ayInn 2d
(24ydv- d)aNT =: 24
ld % Ld

(LYY¥dV d)anNI =: 14

ALST ALNA

ADVISANI
L A007d M
L ¥0079 M
L J207Td M
GaXTId AOVIE

EYV¥d 131DdW0D

ONT UNILNOY

LYY1S NIVW
3UWYXA J1nqow

1 d0vd

AR U]

%

4
0

99 00000009001

¥ 00000005001
NS
;4
4
%

heo

0£0

120

ONT 00000000000
%
SSNEL
LMYV
LMYdY
ARG
%
%
¥

0861 HOYVW 92

S0€
(%43
ozt
543
60¢€
02t
103

KVJSINCIM

00¢
Y
T4

19¢
120
091
0co

Gee

®£000000000
0£000000000
2000000000
0000000000

,L2000000000
2000000000
9.1 12000000000
9Ll 41000000000
¢1 000000000
01000000000

S0000000000

00000000000

{#£000000000
0£000000000
12000000000
00000000000

THTARYXH

G2 UITHWISSY 00G-THON

9¢
11
he
€€
43
L€
0]
62
ge
Le
9c
T4

O NN

te
(A4

[aFya B}

Le
0¢c
61
Rl
Ll

Ay oy Oy A

a,
O — N M N0
— - T -

Qv
N

T AN M N0 -0

JINAONW

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

JTNAOWANT
LA

"dOLS "3°T ‘WYHO0Ud NTVW WOHA wNYNLTUw

Drglad gy d g oONT 11v0

‘0 QaNV
dd ‘V SHALAWYHYA T¥D0T € HIIM ANILOOM T1TYD

00t ‘07T06# “MLS LINT

“NOTJINTAHC

ONIQHA30HYd LISYT JHL NI HWVHA MOVLIS dHLI 40 UZIS
dHL ONIAID NOILONNA OISNIYINT NV ST DOT0S#

‘001 40 ANVWIA MIVLS TVIOL

ANY ‘OT0S# HIDNAT “WMIS. IV ONINNIDAA dWVHJ

%

R OWR wR wR

LYYLS

uR SR BR BR wR

00000000000

il
0x0
0r000000000

Lol
901
G0l
£00

GLE
GLE

002

€0E

HEE

£5000000000 d S
€9
24000000000 d 2S
LS
04
bh

L 1000000000 d 8%
Lt
9t
Gh
tth

0£000000000 d £
ch
Lh
Ot
6€
8t
LE

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

JIIOJLIAA SHOYYE ON

f d4DVd L2:706G1 0861 HOYVW 92 ZVASINQIM G2 YATHWASSY 00G~JHON
th #62 ALS

#th c LHVIS

8t wfrl t ON1

fil %9 A1Sd

8h #2¢ 4]

gh #lE dqd

£ #ll CUVJIY

0c #01 cHYdY

al %6 LYVdy

8h #0¢ v

31dYL FONIYIATH-SSOHD

¢ d0vd 92 1 h0GL 0861 HOUVW 92 RVASINGIAM G2 HATIWIASSY 000G~ QHON
00000000000 a M ALSd

1€£000000000 ¥ M EHYdY

0£000000000 Vv M CHVJYV

112000000000 ¥ M LYVdV

ONT OL "1¥307T STOHKWXS

0k000000000 a M ALS
0£000000000 W d M IHVLS
00000000000 d M ONT
hH£000000000 Vv M J
0£000000000 Vv M g4
2000000000 vy M v

STI0HWXS TVH0TD

dTVL TOGWXS
¢ 4ovd 9¢:H0G1 0861 HOYYW 92 XAVASIANAIM G2 HITIWISSY 005—CHON

ND80.113.02
Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX F

ADDPRESS CODES

NAME SIZE OPERATIGCN

LOCAL ea=(B)+d*y
LOCAL ea=(B)+d

LOCAL ea=(B)+d

LOCAL ea={(B)+d

LOCAL P.I. ea=(B)+d+p*(Rn)
LocaL P.I. ea=(B)+d+p*(Rn)
LOCAL P.I. ea=(B)+d+p*(Rn)
LOCAL INDIRECT ea=((B)+d)
LOCAL INDIRECT ea=((B)+d)
LOCAL INDIRECT ea=((B)+d)

TrwEnoLEempE RN MW R mOOn

LOCAL INDIRECT P.I. ea=((B)+d;+p¥*(Rn)

LOCAL INDIRECT P?.I. ea=((B)+d)+p*{Rn)

LOCAL INDIRECT P.I. ea=((B)+d)+p*(Rn)

RECORD ea=(R)+d*4

RECORD ea=(R)+d

RECORD ea=(R)+d

RECORD ea=(R)+d

PRE INDEXED ea=(Rn)+d

PRE INDEXED ea=(Rn)+d

PRE DNDEXED ea=(fn)+d

ABSOLUTE ea=a

ABSOLUTE P.I. ea=a+(Rn)¥*p

CONSTANT :S op=a

CONSTANT :B op=c

CONSTANT :H op=c

CONSTANT Y op=¢

CONSTANT :F op=c

CONSTANT :D op=¢

REGISTER op=(Rn)

DESCRIPTOR ea=A+p*(Rn)

ALTERNATIVE

NOT USED

0 - Contents of

ea - Effective address

op -~ Value of operand , op=(ea)

A - Descriptor.address

a - Absoclute address

o] - Constant

d - Displacement

x = 0,1,2,3,“,5,6,7

y - 0,1,2 or 3 specifies the registers R1 to RA4.

p - p= 1/8 (bit), 1 (byte), 2 (half word), Y4 (word), U4 (float),
8 (double float) operations. Post index scaling factor.

Rn - - Used to reference a register, n=1,2,3,4

B - Base register

R - Record register

ND-60.113.02

1dd
301
302
303
3244y
330+y
3344y
305
306
307
38U8+y
350+y
354+y
2dd
311
312
313
36U+y
370+y
3T4+y
304
340+y
Occ
315
318
317
317
314

320+y
360+y

310
300

OCTAL LAYOUT

dad
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd
ddd

ddd
ddd
ddd
ddd
ddd
ddd
aaa
3aa

cce
ccce
cece
cce
cee
cce

ddd
ddd

ddd
ddd

ddd
ddd

ddd
ddd

ddd
ddd

ddd
ddd
aaa
aaa

cce
cee
ccce
cee
cce

ddad

ddd

ddd

ddd

ddd

ddd
aaa
2aa

cee
cee
cee
cce

{operand>
{operand>

Scanned by Jonny Oddene for Sintran Data © 2011

ddd

ddd

add

ddd

ddd

ddd
aaa
aza

cce
cce
cce
cce

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX G

ADDRESS CODE TABLE

S :B H
LOCAL 1dd 301 302
LOCAL P.I. 324+ 330+
LOCAL INDIRECT 308 306
LOCAL INDIRECT P.I. 384+ 350+
RECORD 2dd 311 312
PRE INDEXED 36U+ 370+
ABSOLUTE
ABSOLUTE P.I.
CONSTANT Oce 315 316
REGISTER 320+
ADDRESS CODE PREFIXES:
DESCRIPTOR
ALTERNATIVE

ND-60.113.02

303
334+
307
354+
313
3748+
304
340+

317

317

:D PREFIX
214
360+
310

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX H

INSTRUCTION LIST

ARITHMETICAL, LOGICAL, and DATA TRANSFER INSTRUCTIONS

Instruction Code

octal assembly

value notation name

176004+ (n-1) Bln = load bit

004+ (n=-1) BYn := load byte

010+ (n=1) Hn = load halfword
014+(n=-1) Wn = load word

020+ (n-1) Fn = load float

024+ (n-1) Dn = lcad double float
176010 B:= load local base

030 R:= load record base
176014+ (n=-1) BIn = store bit

034+ (n-1) BYn = store byte

176020+ (n-1) Hn = store halfword

040+ (n-1) Wn = store word

Oll4+ (n=-1) Fn = store float

050+ (n~1) n = store double float
176012 B=: local base store
176011 R=: record base store
176013 BI MOVE move bit

031 BY MOVE move byte

176024 H MOVE move halfwerd

032 W MOVE move word

033 F MOVE move float

054 D MOVE move double float
176030+ (n=-1) BIn COMP register bit compare
060+ (n~1) " BYn COMP register byte compare
176034+ (n-1) Hn COMP register halfword compare
064+ (n-1) Wn COMP register word compare
070+ (n~1) Fn COMP register float compare
074+ (n=1) Dn COMP register float compare
176025 BI COMP2 bit compare

055 BY COMP2 byte compare

176026 H coMP2 halfword compare

056 W COMP2 word compare

057 F COMP2 float compare

100 D CoMP2 double float compare
101 BI TEST bit test against zero
102 BY TEST byte test against zero
103 H TEST halfword test against zero
104 W TEST word test against zero
105 F TEST float test against zero
106 D TEST double float test against zero

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

177010+ (n-1)
177014+ (n-1)
220+(n=1)
224+ (n-1)
224+ (n-1)

177020+ (n-1)
177024+ (n-1)
177030+ (n-1)

230+ (n-1)
177420+ (n-1)

177400+ (n=-1)
1774804+ (n=-1)
177410+ (n=1)
177414+ (n=1)
177418+ (n=1)

176064+ (n=-1)
176070+ (n=-1)
12U+ (n=-1)
130+ (n-1)
134+ (n-1)

175074+ (n-1)
176100+ (n=-1)

140+ (n=-1)
1844 (n=-1)
150+(n-1)

176104+ (n-1)
176110+ (=1)
154+ (n-1)
160+ (n-1)
164+ (n-1)

176114+ (n~-1)
176120+(n=1)
170+(n=-1)
174+ (n=-1)
350+(n-1)

176027
176124
123

176126
176127

176130
176131
340

176133
176134

176135
176136
176137
176140

BYn

Wn
Fn
Dn

Bln
BYn

Wn
Wn

BYn

Wn
Fn
Dn

BYn
Hn
Wn
Fn
Dn

BYn
Hn
wn

on

BYn
Hn
Wn
Fa
Dn

BYn
wWn

Fn
Dn

(24

I E W

NEG byte register negate

NEG halfword register negate

NEG word register negate

NEG float register negate

NEG double float register negate

INV bit invert register

INV byte invert register

INV halfword invert register

INV word invert register

INVC word invert register with carry

ABS byte absolute value

ABS halfword absolute value

ABS word absolute value

ABS float absolute value

ABS double float absolute value
+ byte add
+ halfword add
+ word add
+ floating add
+ double flcat add
- byte subtract
- halfwerd subtract
- word subtract
- float subtract
- double float subtract
o byte multiply
¥ halfword multiply
bd word multiply
* floating multiply
double float multiply

/ byte divide

/ halfword divide

/ word divide

/ float divide

/ double float divide
ADD2 byte add two arguments
ADD?2 halfword add two arguments
ADD2 word add two arguments
ADD2 float add two arguments
ADD2 double float add two arguments
SUB2 byte subtract two arguments
SUB2 nhalfword subtract two arguments
SUB2 word subtract two arguments
SUB2 float subtract two arguments
SUB2 double float subtract two arguments
MUL2 byte multiply two operands
MUL2 halfword multiply two operands
MUL2 word multiply two operands
MUL2 float multiply two operands

ND-60.113.02

- Scanned by Jonny Oddene for Sintran Data © 2011

176141

176142
176143
176144
176145
176146

176147
176150
176151
176152
176153

176154
176155
176156
176157
176160

176161
176162
176163
176164
176165

176166
176167
176170
176171
176172

176040+ (n-1)
176044+ (n-1)
176050+ (n-1)

176054+ (n=-1)
176060+ (n-1)
176174+ (n=1)

176200+ (n=1)
177110+ (n=1)

177100+ (n=-1)
177104+ (n=1)

204+ (n-1)
204+ (n=-1)
204+ (n-1)
204+ (n-1)
210+ (n-1)
218+ (n-1)

176205
110
1M
112
113
114

<

O oEINw

[w IRV 8 ¢]
1.:12’_<

8Y¥n
Wn
BYn
Hn
Wn

Wn
Wn

Wn
Wn

BIn
BYn

Wn
Fn
Dn

BI

) o]
Uth

MULZ2

DIVe
DIV2
DIV2
DIV2
DIV2

ADD3
ADD3
ADD3
ADD3
ADD3

SUB3
SUB3
SUB3
SUB3
SUB3

MUL3
MUL3
MUL3
MUL3
MUL3

DIV3
DIV3
DIV3
DIV3
DIV3

MUL 4
MUL Y
MUL 4

DIV4
DIVL
.DIV4

UMUL
UDIV

ADDC
SUBC

CLR
CLR
CLR
CLR
CLR
CLR

STZ
STZ

'STZ

STZ
STZ
STZ

double float multiply two operands

byte divide two arguments
halfword divide two arguments
word divide two arguments

float divide two arguments

double float divide two arguments

byte add three arguments
halfword add three arguments
word add three arguments

float add three arguments

double float add three arguments

byte sutract three operands

halfword subtract three operands
word subtract three operands

float subtract three operands

double float subtract three operands

byte multiply three arguments
halfword multiply three arguments
word multiply three arguments

float multiply three arguments

double float multiply three arguments

byte divide three arguments
halfword divide three arguments
word divide three arguments

float divide tnree arguments

double float divide three arguments

byte multiply with overflow
halfword multiply with overflow
word multiply with overflow

byte divide with remainder
halfword divide with remainder
word divide with remainder

word unsigned multiplication
word unsigned divide

word add with carry
word subtract with carry

bit register clear

byte register clear
halfword register clear
word register clear

float register clear

double float register clear

bit store zero

byte store zero
halfword store zero
word store zero

float store zero

double float store zero

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

176206
176207
176210
115
107
176211

176212
116
117
120
176213

176214
176215
121

176216
176217

176714+ (n=-1)
176220+ (n=~1)
176224+ (n=-1)
344+(n-1)

176770+ (n=~1)
176220+ (n-~1)
176234+ (n=1)
240+ (n-1)

1767748+ {n-1)
176240+ (n=1)
176244+ (n=1)
2444 (n=-1)

176250
176251
176252

176253
176254
176255

176256
176257
176260

176264+ (n=-1)
176270+ (n=1)
176720+ (n-1)

176724+ (n=-1)
176730+ (n-1)
1767348+ (n-1)

177175
177176
177177

177200
177201

w w
[

U"I'JIZIEE O X

<

U mE X W

BYn
wn
3In

BYn
Hn

L afe sl vs]
<

i::ca

[s s]
= 2

BYn
Wn
BYn

Hn
Wn

SET1
SET1
SET1
SET1
SET1
SET1

INCR
INCR
INCR
INCR
INCR

DECR
DECR
DECR
DECR
DECR

AND
AND
AND

CR
CR
OR
CR

- XCR
XOR
XCR
XOR

SHL
SHL
SHL

SHA
SHA
SHA

SHR
SHR
SHR

GETBI
GETBI
GETBI

PUTBI
PUTBI
PUTBI

CLEBI
CLEBI
CLEBI

SETBI
SETBI

bit set to one

byte set to one
halfword set to one
word set to one

float set to one

double float set to one

byte increment
nalfword increment
word increment

float increment

double float increment

byte decrement

hal fword decrement
word decrement

float decrement

double float decrement

bit and register
byte and register
halfword and register
word and register

bit or register
byte or register
halfword or register
word or register

bit exclusive or register
byte exclusive or register
halfword exclusive or register
word exclusive or register

byte shift logical
halfword shift logical
word shift logical

byte shift arithmetical
halfword shift arithmetical
word shift arithmetical

byte shift rotational
halfword shift rotational
word shift rotational

byte get bit
halfword get bit
word get bit

byte put bit
halfword put bit
word put bit

byte clear bit
halfword clear bit
word clear bit

byte set bit
halfword set bit

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

177202 W SETBI word set bit
176740+ (n=1) BYn GETBF byte get bit field
176744+ (n-1) Bn GETBF halfword get bit field
176750+(n=-1) Wn GETBF word get obit field
176754+ (n=-1) BIn PUTBF byte put bit field
176760+ (n-1) Hn PUTBF halfword put bit field
176764+ (n=-1) Wn PUTBF word put bit field
176300+(n=1) Fn AXI register float argument to the <I>'th power
176304+(n=1) Dn AXI register double float argument to the <I>'th
power
176310+{(n-1) BYn IXI register byte I to the <J>'th power
176314+(n-1) Hn IXI register halfword I to the <J>'th power
176320+ (n-1) Wn IXI register word I to the <J>'th power
176324+ (n-1) Fn SQRT register float square root
176330+ (n-1) Dn SQRT register double float square root
176275 BI SWAP bit swap
176276 BY SWAP byte swap
176277 H SWAP halfword swap
122 W SWAP word swap
176334 F SWAP float swap
176335 D SWAP double float swap
176340+ (n-1) Fn ?OLY floating polynomial
1763444+ (n-1) Dn POLY double float polynomial
177120+ (n-1) Fn REM float divide with remainder
177134+ (n=1) Dn REM double float divide with remainder
177140+ (n=1) Fn INT float integer part
177144+ (n-1) Dn INT double float integer part
177150+ (n-1) Fn INTR float integer part
with rounding
177154+ (n-1) Dn INTR double float integer part
with rounding
176350+ (n-1) BYn MULAD byte multiply and add
176354+ (n=-1) Hn MULAD halfword multiply and add
250+(n-1) Wn MULAD word multiply and add
176360+ (n=1) Fn MULAD float multiply and add
176364+ (n=1) Dn MULAD double float multiply and add
176370+(n-1) BYn _PSUM byte add and multiply
176374+ (n=-1) Hn PSUM halfword add and multiply
176400+ (n-1) Wn PSUM word add and multiply
176404+ (n-1) n PSUM float add and multiply
176410+ (n=1) Dn PSUM double float add and multiply
176414+ (n-1) BYn LIND byte load index
176420+ (n=-1) Hn LIND hal fword load index
254+ (n-1) Wn LIND word load index
176424+ (n-1) BYn CIND byte calculate index
176430+ (n-1) Hn CIND hal fword calculate index
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

260+ (n-1) Wn CIND

CONTROL INSTRUCTIONS

Instruction Codes

octal assembly
value notation
300 GO:B
301 GO:H
302 GO:W
264 JUMPG

Instruction Codes

cctal assembly
value notation
IF=GO
IF Z GO
304 IF=G0:B
305 IF=GO:H
IF><GO
IF -2 GO
306 IF><GO:B
307 IF><GO:H
IF>GO
318 IF>GO:B
311 IF>GO:H
IF<GO
IF S GO
312 IF<GO:B
313 IF<GO:H
IF>=G0
IF =S GO
314 IF>=G0:B
315 IF>=GJ:H
IF<=G0O
316 IF<=GO:B
317 IF<=GO:H
IF K GO
320 IF X GO:B
321 IF K GO:H
IF -K GO
322 IF -K GO:B
323 IF -K GO:B
IF>>GO
324 IF>>G0:B
325 IF>>GO:H
IF>>=G0

condi

word

Jump
Jump
Jump
Jump

tion

calculate index

byte
halfword
word
general

name

equal

(alt. assembly notation)
byte displacement
halfword displacement

unequal

(alt. assembly notation)
byte displacement
halfword displacement

S=0 and Z=9 greater signed

S

0

less signed
(alt. assembly notation)

greater or equal signed
(alt. assembly notation)

S=1 or Z=1 less or equal signed

flag

not flag

C=1 and Z=0 greater magnitude

c

ND-60.113.02

greater or equal magnitude

Scanned by Jonny Oddene for Sintran Data © 2011

IF C GO (alt. assembly notation)
326 IF>>=G0:B
327 IF>>=G0:H
IF<<GO C=0 less magnitude
IF -C GO (alt. assembly notation)
330 IF<<GO:B
331 IFK<GO:H
IF<<K=GO C=0 or Z=1 less or equal magnitude
332 IF<<=G0:B
333 IF<K=G0:4
IF ST GO specified bit in status
register set
176173 IF ST GO:B
176544 IF ST GO:H
IF -ST GO specified bit in status
register not set
176545 IF -ST GO:B
176204 IF -ST GO:H

Instruction Codes

octal assembly

value notation name

176336 BY LOOPI:B dbyte locp increment

176436 8Y LOOPI:H byte loop increment

176337 H LOCPI:B nalfword loop increment
176437 9 LQOPI:H nalfword loop increnent
277 W LOOPI:B word loop increment

341 W LOOPI:H word loop increment

176434 F LOOPI:B float loop increment
176441 F LCOPI:H float loop increment
176435 D LOOPI:B double float loop increment
176442 D LOOPI:H double float loop increment
176443 BY LOOPD:B byte locp decrement

176450 BY LOOPD:H byte loop decrement

176444 H LOOPD:B halfword loop decrement
176451 H LOQOOPD:H halfword loop decrement
176445 W LOOPD:B word loop decrement

176452 W LOOPD:H word loop decrement

176446 F LOOPD?B float loop decrement
176453 F LOOPD:H float loop decrement
176447 D LOOPD:B double float decrement
176454 D LOOPD:H double float decrement
176455 BY LOOP:B byte loop general step
176462 BY LOOP:H byte loop general step
176456 H LOOP:B hal fword loop general step
176463 H LOOP:H halfword loop general step
176457 W LOOP:B word loop general step
176464 W LOOP:H word loop general step
176460 F LOOP:B float loop general step

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

176465
176461
176466

303
265

334

337
234
270
335
272
336
274
275

200
201
202
203
235
177034
177035

SPECIAL

F LOOP:H
D LOOP:B
D LOOP:H

CALL
CALLG

INIT

ENTM
ENTD
ENTS
ENTF
ENTSN
ENTEN
ENTT
ENTB

RET
RETX
RETD
RETT
IF K RET
RETB
RETBK

INSTRUCTIONS

Instruction Codes

octal
value

177000
177001

176471
176472
176500

176504
176505
176506
176507
176510

176511
176512
176513
176514
176515

176516
176517
176520
176521
176522

assembly
notation

SOLO
TUTTI

SETE
CLTE
Wn STIFZ

BI BYCONV
BI HCONV
BI WCONV
BI FCONV
BI DCONV

BY BICONV
BY HCONV
BY WCONV
BY FCONV
BY DCONV

H BICONV
H BYCONV
H WCONV
H FCONV
H DCONV

float loop general step
double float loop general step
double float loop general step

call subroutine absolute
call subroutine general

initialize stack

enter module

enter subroutine directly

enter stack subroutine

enter subroutine

enter max argument stack subroutine
enter max argument subroutine

enter trap handler

enter buddy subroutine

clear flag return from subroutine
set flag return from subroutine
return from direct subroutine
trap handler return

if flag set subroutine return
buddy subroutine return

set flag buddy subroutine return

name

disable process switch
enable process switch

set bit in local trap enable register
clear bit in local trap enable register
compare and store if zero

bit to byte convert

bit to halfword convert

bit to word convert

bit to float convert

bit to double float convert

byte to bit convert

byte to halfword convert
byte to word convert

byte to float convert

byte to double float convert

halfword to bit convert

halfword to byte convert

hal fword to word convert
halfword to float convert
halfword to double float convert

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

p—

176523
176524
176525
176526
176527

176530
176531
176532
176533
176534

176535
176536
176537
176540
176541
177160
177161

177162

177163

177164

177165

177203

177204

17704C+(n=-1)
1770484+ (n=1)
177050+ (n=-1)
176474+ (n=-1)
176474+ (n=-1)
1770548+ (n-1)

176125
176132
176261
276
276
176262

176263
176274
176467
176543
176543
176470

002
003

W BICONV word to bit convert
W BYCONV word to byte convert
W HCONV word to nalfword convert
W FCONV word to float convert
W DCONV word to double float convert
F BICONV float to bit convert
F BYCONV float to byte convert
F HCONV float to halfword convert
F WCONV float to word convert
F DCONV float to double float convert
D BICONV double float to bit convert
D BYCONV double float to byte convert
D HCONV double float to halfword convert
D WCONV double float to word convert
D FCONV double flcat to float convert
F BYCONR float to byte convert
with rounding
D BYCONR double float to byte convert
with rounding
F HCONR float to halfword convert
with rounding
D HCONR double float to halfword convert
with rounding
F WCONR float to word convert
with rounding
D WCONR double float to¢ word convert
with rounding
W FCONR word to float convert
with rounding
D FCONR double float to float convert
with rounding
BIn LADDR bit load address
BYn LADDR byte load address
Hn LADDR halfword load address
Wn LADDR word load address
Fn LADDR loat load address
Dn LADDR double float load address
BI RLADDR bit load address record
BY RLADDR byte load address record
H RLADDR halfword load address record
%) RLADDR word load address record
F RLADDR float load address record
D RLADDR double float load address record
BI BLADDR bit load address local
BY BLADDR byte load address local
B BLADDR halfword load address local
W BLADDR word load address local
F BLADDR float load address local
D BLADDR double float load address local
BP break point instruction
NOOP no operation
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

177002 SETK set flag

177003 CLRK clear flag

177114+ (n-1) wn GETB get buddy

176666 FREEB free buddy

275 ENTB enter buddy subroutine

177034 RETB buddy subroutine return
177035 RETBK buddy subroutine error return

REGISTER COMMUNICATION INSTRUCTIONS

Instruction Codes

octal assembly
value notation name
176473 L:= load link register
176667 HL:= load upper limit register
176670 LL:= load lower limit register
176671 STi:= load first status register
176673 TE1:= load first local trap enable register
176674 TE2:= load second local trap enable register
176675 TOS: = load top of stack register
176712 THA: = - load trap handler register
176700 L=: store link register
176701 HL=: store upper limit register
176702 LL=: store lower limit register
176703 ST1= store first status register
176705 TE1= store first local trap enable register
176706 TE2= store second local trap enable register
176707 SEi= store first system trap enable register
176710 SE2= store second system trap enable register
176711 TOS= store top of stack register
176713 THA= store trap handler register
176542 P=: store program counter
177060+ (n=-1) An:= load most significant part of
- double float register
177064+ (n=1) En:= load least significant part of
double float register
177070+ (n=1) An=: store most significant part of
double float register
177074+(n=1) En=: store least significant part of
double float register
176440 BY BMOVE byte block move
177170 H BMOVE halfword block move
177171 W BMOVE word block move
177172 F BMOVE float block move
177173 D BMOVE double float block move

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

STRING INSTRUCTIONS

Instruction Codes

octal assembly
value notation
176546 BI SMOVE
176547 BY SMOVE
176550 H SMOVE
176551 W SMOVE
176552 F SMOVE
176553 D SMOVE
176562 BY SMVWH
176563 BY SMVUN
176564 BY SMVTR
176565 BY SMVTU
176566 BI SMOVN
176567 BY SMOVN
176570 H SMOVN
176571 W SMOWN
176572 F SMOVN
176573 D SMOVN

176574+ (n-1) BIn SFILL
176600+ (n=-1) Bn SFILL
176604+ (n-1) Hn SFILL
176610+ (n-1) wn SFILL
176614+ (n=1) Fn 3FILL
176620+ (n-1) Dn SFILL

176624+ (n-1) Bin SFILLN
176030+ (n=-1) BYn SFILLN

176634+ (n=-1) Hn SFILLN
176640+ (n-1) Wn SFILLN
176644+ (n=-1) Fn SFILLN
176650+ (n=-1) Dn SFILLN
176654 BY SCOMP
176655 BY SCOTR
176676 © BY SCOPA
176677 BY SCOPT
176656 BY SSKIP
176657 BI SLOCA
176660 BY SLOCA
176661 EY SSCAN
176662 ~ BY SSPAN
176663 BY SMATCH
176664 BY SSPAR
176665 BY SCHPAR

name

bit string move

byte string move
halfword string move
word string move

float string move

double float string move

byte move string while
byte move string until

move translated string
move string translated until

string move n bits

string move n bytes

string move n halfwords
string move n words

string move n floats

string move n double floats

bit string fill

byte string fill
halfword string fill
word string fill

float string fill

double float string fill

string fill
string fill
string fill
string fill
string fill
string fill

bits

bytes
halfwords
words

floats

double floats

jo Jio B« B e B & o |

string compare
string compare translated

string compare with pad
string compare translated
with pad

skip elements

string locate bit
string locate byte

string scan
string span
string match

set parity in string
check parity in string

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Scanned by Jonny Oddene for Sintran Data © 2011

APPENDIX |

INSTRUCTION CODE TABLE

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

BI BY H W F D
tn :=z 176004 004 010 014 020 cau
R = 030
B = 176010
tn = 176014 034 176020 040 oul 050
R = 176011
B = 176012
t MOVE 176013 031 176024 032 033 os4
tn COMP 1760306 060 176034 064 070 o074
t COMP2 176025 055 176026 056 057 100
t TEST 101 102 103 104 105 106
tn NEG 177010 177014 220 224 224
tn INV 177020 177024 177030 230
tn INVC 177420
£n ARS 177400 177404 177410 177414 177414
tn + 176064 176070 124 130 134
tn - 176074 176100 140 144 150
tn * 176104 176110 154 160 164
tn / 176114 176120 170 174 350
t ADD2 176027 176124 123 176126 176127
t SUB2 176130 176131 340 176133 17613Y
t MUL2 176135 176136 176137 176140 176141
t DIV2 176142 176143 176144 176145 176146
t ADD3 176147 176150 176151 176152 176153
t SUB3 176154 176155 176156 176157 176160
£ MUL3 176161 176162 176163 176164 176165
t DIVS 176166 176167 176170 176171 176172
tn MUL4 176040 176044 176050
tn DIVY 176054 176060 176174
tn UMUL 176200
tn UDIV 177110
tn ADDC 177100
tn SUBC 177104
tn CLR 204 204 204 204 210 214
t STZ 176205 110 111 112 113 114
t SET1 176206 176207 176210 115 107 176211
t INCR 176212 116 117 120 176213
t DECR 176214 175215 121 176216 176217
tn AND 176714 176220 176224 344
tn COR 176770 176230 176234 240
tn XOR 176774 176240 176244 24l
t SHL 176250 176251 176252
t SHA 176253 176254 176255
t SHR 176256 176257 176260
tn GETBI 176264 176270 176720
tn PUTBI 176724 176730 176734
t CLEBI 177175 177176 177177
t SETBI 177200 177201 177202
tn GETBF 176740 176744 176750
tn PUTBF 176754 176760 176764 -
tn AXI 17€300 176304
tn IXI 176310 176314 176320
tn SQRT 176324 176330
t SWAP 176275 176276 176277 122 176334 176335
tn POLY 176340 176344
tn REM 177130 177134
tn INT 1771480 177144
tn INTR 177150 177154
tn MULAD 176350 176354 250 176360 176364
tn PSUM 176370 176374 176400 176404 176410
tn LIND 176414 176420 254
tn CIND 176424 176430 260
B GO 300
H GO 301

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

BI BY H W F D
W GO 302
JUMPG 264
:B IF = GO 304
:h IF = GO 305
:B IF >< GO 306
:H IF >< GO 307
:B IF > GO 310
:B IF > GO 311
:B IF < GO 312
:H IF < GO 313
1B IF >= GO 314
:H IF >= GO 315
:B IF <= GO 316
:H IF <= GO 317
:B IF K GO 320
:h IF X GO 321
:B IF -K GO 322
:H IF -K GO 323
:B IF >> GO 324
:H IF > GO 325
:B IF >>= GO 326
:H IF >>= GO 327
1B IF << GO 330
:H IF << GO 331
:B IF <<= GO 332
B IF = GO 333
:B IF ST GO 176173
:H IF ST 30 176544
:B IF -ST GO 176545
:H IF -ST &0 176204
:B t LOOPI 17€336 176337 277 176434 176435
:H ¢t LOOPI 1764386 176437 2W1 176441 175442
:E t LCOPD 176443 176444 176445 176446 176447
:H t LOOPD 176450 176453 176452 176453 176454
:B ¢ LOOP 176455 176456 176457 176460 176461
:H t LOOP 176462 176463 176464 176465 176L60
CALL 303
CALLG 265
INIT 334
ENTM 337
ENTD 234
ENTS 270
ENTF 335
ENTSN 272
ENTEN 336
ENTT 274
ENTB 275
RET 200
RETK 201
RETB 177034
RETBK 177035
RETD 202
RETT 203
IF K RET 235
SOLO 177000
TUTTI 177001
SETE 176471
CLTE 176472
tn STIFZ 176500
t BICONV 176511 176516 176523 176530 176535
t BYCONV 176504 176517 176524 176531 176536
t HCONV 176505 176512 176525 176532 176537
t _WCONV 176506 176513 176520 176533 176540

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

BI BY H W F D

t FCONV 176507 176514 176521 176526 176541
t DCONV 176510 176515 176522 176527 176534
£ BYCONR 177160 177161
t HCONR 177162 177163
t WCONR 177164 177165
t FCONR 177203 177204
tn LADDR 177040 177048 177050 176474 17647TH 177054
t RLADDR 176125 176132 1762617 276 276 176262
t BLADDR 176263 176274 176467 176543 176543 176470

BP 002 -

NOQP 003

illeg.1 000

illeg.2 001

SETK 177002

CLRK 177002
Wn GETB 177114

FREEB 176666
L = 176473
HL := 176667
LL := 176670
ST1:= 176671
TE1:= 176673
TE2:= 176674
TOS: = 176675
THA: = 176712
L = 176700
HL = 176701
LL = 176702
ST1= 176703
TE1= 176705
TE2= 176706
SE1= 176707
SE2= 176710
TOS=: 176711
THA= 176713
P = 176542
An := 177060
En := 177064
An = 177070
En =: 177074
t BMOVE 176440 177170 177171 177172 177173
t SMOVE 176546 176547 176550 176551 176552 176553
t SMVWH 176562
t SMVUN 176563
t SMVTR 176564
t SMVTU 176565
t SMOVN 176566 176567 176570 176571 176572 176573
tn SFILL 176574 176600 176604 176610 176614 176620
tn SFILLN 176624 176630 176634 176640 176644 176650
t SCOMP 176654
t SCOTR 176655
t SCOPA 176676
t SCOPT 176677
t SSKIP 176656
t SLOCA 176657 176660
t SSCAN 176661
t SSPAN 176662
t SMATCH 176663
t SSPAR 176664
t SCHPAR 176665
n exten. 374

ND£60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

INDEX

Page:

absolute 2—12
actual parameters 2—35
address arithmetic 2—12
address codes 2—-5
addressing modes 2—5,2-8

absoiute 2—10

absolute post-indexed 2—10

ADDR 2—-10

alternative area 2—10

constant operand 2—10

descriptor 2—10

local 2—9

local indirect 2—-9

local indirect p.i. 2—9

iccal post-indexed 2—9

pre-indexed 2—-9

record 2-9

register 2—10
ALIAS 2—20,4-3
$ALIGN 2-38
alternatives 2—1
ampersand 2—2
angle brackets < > 2-35,2-36
ASCl 2—-2
ASSEMBLE 3-2
assembler 1-2,1-3
assembler operating procedure 3—1

command name 3—-1

command processor 3-1

parameters 3-1

start assembier 3-1

standard editing characters 3—1
assembly notation 2—5, F-1
assembly listing format 3-3,3—4,4-1
AUX 2-13,2—-16,2-21,D—-1
ARRAY 2-26
ARRAY DATA 2-27
basic elements 2-3

syntax of 2—-4
blank lines 2—-2
BLOCK 2-25
BOUND-D 2—-28
BOUND-P 2—-28

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Page
colon 2-37
commands 2—-2,2-29
conditional assemply 2—-31
listing control 2-29,2-30
miscellaneous 2-38
summary of B—-1
conditional block 2-—-31
constant 2—-3
CPU time 4-2
CROSS REFERENCE TABLE 3—-3,4-3
current location counter 4—2
DATA 2-25
data address 2—-7,2—-12,2-18
#DATE 2—15,2-16,D—1
data packing 2-38
daia part length specifier 28
data type specifier 2—-26.2-17
#DCLC 2—14, D—-1,2-16,2—-28

|
N
o))

DESC
direct absclute acdrassing
direct operand

dirscr rarme

e, s
BRI)

l
—= NN =
~!
(3]
|
3

da:a eliotaton
deciaration and definition
location counter control
summary of

o Ol

RN D NN NN RN N
|
N

disp —8
displacemeant addressing -7
diabel -8
dollar sign —-1,3-1
$EJECT 2-30
$ELSE 2—-31
$ELSEIF 231
empty statements 2-2
$ENDIF 2-31
$ENDMACRO 2-33
$EOF 2-38
EQU 2-24
error messages 4-2
exclamation mark 2—-35
EXIT 3-2
$EXITMACRO 2—-34
EXPORT 2-19
expression syntax 2—16
expressions 2—11
external data access 2—-18
ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

Page:
file name 2-3,2-4
form feed 2—30
formal parameters 2—-33
general operands 2-8
generated code 3-3,4-2
generated symbois 2-37
globai symbcis 3-3
HELP 3—2.3-3
identifier 2—-3,2-4
$iF 2-31
IMPORT-D 2-18
$INCLUDE 2-32
instructions 2—-2,2-5
instruction code 2—-5,2-6
integer constant 2-3,2—-4
intrinsic consiants 2—-13,D-1
intrinsic funcrions 2—14,D-1
LABEL 2-37
i2y=is 2—-52-17
LiE 2—19
LINES 3-2
$LIST 2-29,3-2
LIST 3-2
<list file> 3-2
local symbols 3-3
location counter 3-3
location counter symbols 2—14
#L0G2 2—15,2-16,D-1
lower case letters 2-2
$MACRO 2-33
macro calls 2-35
macro definitions 2-33
macro expansions 3-3
macro nesting 2-36
MACRO-TABLE 3—-4
MAIN 2—18
MESSAGE 2—28
meta language 2—-1
meta variable 2—1
MNO 2-37
MODULE, ENDMODULE 2-18
MODULE EXAMPLE 1—-4
MODULE HANO! 1-5
module name 2—18

ND-60.113.02

Scanned by Jonny Oddene for Sintran Data © 2011

NARG
#NARG
#NCHR
$NOLIST
NORD-500 CPU
‘NRF

OBJECT-CODE-BUFFER
<object file>
operand darta type
integer
reai
string
operand specifier
operator
optional item
ORG-D
ORG-P

$PACK

page heading
parenthesis
#PCLC
percent sign
plabel

PREVB

PRINT MACRO
PROG

program address
program listing

#RCLC

real constant

RECORD, ENDRECORD
RECORD FIXED

register number

repeated construct

RETA

ROUTINE, ENDRQOUTINE

#SCLC
$SECTION
section-name
SEQU
SINTRAN (I}
source code
<source file>

Scanned by Jonny Oddene for Sintran Data © 2011

Page:

2-13,2-16,2-21,D-1
2—15,2—-16,2—-37, D1
2—-15,2-16,D—1
2—-29,3-2

1-1

1-1,1-2,2-17

2-27
2-37

2-38

41

21
2—14,2-16,2-28, D1
2-2

2—-8

©2—13,2—16,D—1

2—14,2-15,2-16,2-21,
D—1

2-3,2-4

2—-23

2—-23

2-8

2—1
2—-13,2-16,2-21, D1
2-20

2—-14,2-15,2-16,2-22, D1

2-32
2—-32
224
1—-1,3-1
4-2

3-2

ND-60.113.02

source program format

source-line-buffer
source line number
SP

stack block

stack demand

STACK, ENDSTACK

stack entrv header
STACK FIXED
STRING
STRINGDATA
string constarit
subroutine
:SYMB

symbol address
SYMBOL TABLE
symbois, reserved

TABLE SIZES
terminai symboi
$TITLE

#ZERGC
#ZEROP

Scanned by Jonny Oddene for Sintran Data © 2011

Page:

NN DB W

-2
—4
-2
—1
—1

4
214
274,22
2-13
221,222
2-26

2-27
2-3,2-4
220 ,
1-1,3-2,3—4
2-5

4-3

C—1

ND-60.113.02

3,2—16,2—-21,D0-1

Scanned by Jonny Oddene for Sintran Data © 2011

(22X A2 X2 222X 2 SEND Us YOUR COMMENTS!!! BRBLXNBBERRERRN

. Are you frustrated because of unclear information in
this manual? Do you have trouble finding things?

\

Please let us know if you

¢ find errors

* cannot understand information

* cannot find information

* find needless information
Do you think we could improve the manual by
rearranging the contents? You could also tell
us if you like the manual!

exssnsssnsss HELP YOURSELF BY HELPING US!! . ocvienens

Manual name: Manual number:

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual ?

Your name: Date:
Company: Position:
Address:

What are you using this manual for ?

NOTE! Send to:

This form is primarily for Norsk Data A.S —_—
documentation errors. Software and Documentation Department

system errors should be reported on P.O. Box 25, Bogerud Norsk Data’s answer will be found
Customer System Reports. 0621 Oslo 6, Norway on reverse side

Scanned by Jonny Oddene for Sintran Data © 2011

Answer from Norsk Data

Answered by Date

Norsk Data A.S

Documentation Department
P.O. Box 25, Bogerud
0621 Oslo6, Norway

Scanned by Jonny Oddene for Sintran Data © 2011

£

Scanned by Jonny Oddene for Sintran Data © 2011

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108

