NORD PL

Program Documentation

NORSK DATA AS

2010

Sc

NORD PL

Program Documentation

Scanned by Jonny Oddene for Sintran Data © 2010 .

REVISION RECORD

Revision Notes
1/14 Original Printing
ND-60. 059, 01

January 1974

A/S NORSK DATA-ELEKTRONIKK

Lorzsnveien 57, Oslo 5 - TIf.: 21 73 71

Scanned-by-Jonny-Oddene for Sintran-Data © 2010

- ———

anned by Jonny-QOddene for Sintran Data ©-2010

Sc

Chapters:

[T e
(SIS VUV

N NN NN DN

WW W WWWW W WWwWWwWwWwww Wwwwwww w
WL 0 I3 3 OO OO W —

B LW W W

(S I N

O U WO

Lo DD

[

i

TABLE OF CONTENTS

INTRODUCTION

General
Related Programs

Input/Output Format
Programming Strategy

PROGRAM LOGIC

Layout
Information Flow
Tables

Main Symbol Table
Pass 1 Buffer
Output Line Buffer
Backtrack Stack
Subroutine Stack

4+
+

Operator Communication with the Compiler

The Variables in the BASE Field

ROUTINE LOGIC

Compiler Entry Points
Error Handling
Statement Start
Commands

Pass i

Executable Statements

Arithmetic Statements
IF Statement

ELSE - FI Statements
FOR Statement

OD Statement

CALL, GO, and LABEL Statements

Executable Expressions
Declaration Statements

BASE - DISP - SUBR

Declaration of Variables:

SYMBOL Statement
Data Expressions

INTEGER, DOUBLE, and REAL

Element Fetching Routines

RP
GET

Scanned by Jonny Oddene for Sintran_Data © 2010

ND-60. 059, 01

Page

,_.._.,_;._L,.;,_‘
U b U
Lo Do = —_ N = = —_

A s

NN NNDN DNN N
) I
S O U

L W w W
]

Lo e

I |

= U1 = DO —_
o . .

W w
! |
SN
-

3-13
3-15
3-17.
3-19
3-20

3-22

3-22
3-22
3-24 -
3-25

3=-27

3-27
3-27

Scanned by Jonny Oddene for Sintran Data © 2010

PR "

—— e e -

it

Chapters: : Page

3.9 Table Routines 3-30
3.9.1 CLTAB 3-30
3.9.2 SEARCH ' 3-30
3.9.3 ALLOCATE 3-30
3.9.4 PCLEAR 3-30
3.9.5 CODE - DCODE 3-30
3.9.6 PUSHF - POPF 3-31
3.9.7 PUSHVAR - RESET 3-31
3.10 Code Generating 3-31
3.10.1 GENIF - Generate a conditional Jump 3-31
3.10.2 GENERATE - Generate an Instruction 3-32
3.11 Object Output 3-35
3.12 Auxiliary Routines 3-35
3.12.1 ENTER - LEAVE 3-35
3.12.2 Symbol Output Routines 3-37
3.12.3 Text and Number Routines 3-37
3.12.4 Character Input/Output Routines 3-37
3.12.5 Searching Routines 3-38
4 MAINTENANCE 4-1

4.1 Generating 4-1

4.2 Modifying the Compiler 4-1

ND-60. 059. 01

~_Scanned by Jonny Oddene for Sintran Data © 2010

1.

1.

1.

1

4

1

2

.3

1-1

INTRODUCTION

General

The NORD PL compiler translates the NORD PL source language
to MAC assembly source code. For the definition of the language,
see the NORD PL User's Guide. :
The compiler runs on a NORD-1 or NORD-10 computer, either -
under TSS, NORD-OPS or free-standing (using standard I/0).

Related Programs

a) The MAC assembler
b) TSS

c) NORD-OPS

d) Standard 1/0

A MAC assembler is necessary to do the final ‘convertion to binary
or BRF format. In principle a very rudimentary version with no

- options can be used. However, if REAL variables are used in a

NORD PL program, the floating point option should be included,
and if BRF format is wanted, the BRF option should be used. As
the user program can contain arbitrary sequences of MAC code,
other options might be necessary in certain cases.

The debug facilities of MAC are supposed to be used; so the
breakpoint option might be useful, :
Operator Communication with the Compiler

The compiler uses the same principle as the MAC assembler,
When the compiler is started, it receives input source text from
the operator Teletype, so that the operator can write NORD PL
commands and statements and then changes the input device number

by the - @@ DEV command.

For NORD-OPS the device numbers are set by the control card.

Tnput/Output Format

The I/0 is performed by means of call of INBT and OUTBT, with
device number in T and character in A (standard call). If a negative
A content is received, an error message will be given. ASCII code
is used. - '

On input the parity bit is ignored. On output, even parity is given.

ND-60. 059. 01

Scanned. by Jonny Oddene for Sintran Data. © 2010

1.

5

1-2

Programming Strategy

The compiler itself is written in NORD PL. The first version was
hand-compiled to MAC code.

The variable parts (tables, buffers, variables, ..) are placed in
the first part. The routines are read - only. The variables are
placed in a global BASE field. The local variables of a subroutine
are DISP-decleared, overlaying the first location of the BASE field.
This means that the same B-register is used for as well local as
global variables. When a new subroutine is called, the variables
of the calling one will be saved on a subroutine stack.

The sequence of the subroutines is for the most hierarchal, so that
a subroutine will be placed after its calls. Internal jumps in a
subroutine will likewise be forward jumps as far as possible.

The compiler is to some degree table-oriented. The state-table
techniques are used extensively.

Some of the main variables (TYPE, VALUE. ...) have a limited
number of values (177_.). These values are defined equal to symbols

beginning with the charagter "5, Subroutines referenced through
global pointers begin with "3'".

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010~

2 PROGRAM LOGIC
2.1 Layout

The compiler layout is like this

Symbol table
(user symbols)

Symbol table
(fixed symbols)

List entries

Pass 1 buffer

Line output buffer (instruction buffer)

Backtrack stack

Data part ——ph

Subroutine stack (local variables)

BASE -field (local and global variables)

Error routines

Statement start routines

5

Q. Commands
=

o

© Pass 1

o)

&

[«¥]

ot

' Statements

Symbol table routines

Code generation routines

Auxiliary routines

ND-60. 059. 01

_ _Scanned by Jonny Oddene for Sintran Data © 2010

2.

2

2-2

Information Flow

The compiler executes physically i one pass.

However, each

statement is preprocessed by a '"Pass {'" routine.

Main info

Source
program:

rmation flow:

—

—————m» List output

Pass 1

L 110 11] Pass 1 - buffer
Intermediate
format GET Statement
handling
Object output
’ .
NI
Output
routines
iMAC code

ND-60. 059. 01

Scanned by Jonny Qddene for Sintran Data-© 2010

Line
buffer

- -

— i — ~

2.3

2.

3.

i

Tables

Main Symbol Table

The main symbol table is used for fixed symbols, user symbols,
and IF-FOR nesting stack.

The main access method is linked hash-index. The three last bits
in the last character of the symbol is used as index in a table,
LISTIN, which contains the start of 8 linked lists in the table.

An auxiliary table, LISTOUT, contains pointers to the end of the
lists. -

At the end of a subroutine the local symbols are removed, the elements
being linked into the FREE list. When a new symbol is entered, -an
element is taken from the FREE list. If the listis empty, more place
is allocated at the end of the active table.

FREE. :I\ +— ABSLIM
FSTACK
(F-FOR) TPOINT
T —{ 1]
{ .Current top
of used area
. Main table
LISTOUT
-
N P -4 —— — g —— «—— FIXLIM
LISTIN
> Fixed
symbols
- EFIXLIM
ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010— S

2.3.2

2.3.3

2-4

Table element:

Link
N1
N2
value/cvalue
4 3 3 3 3
] 'C—/:‘ o) e >
i) @) Q
& = v
N1 - "N2' contains the symbol (b characters).

"'value/cvalue’’ contains VALUE, except for SYMBOL-defined
symbols, where it contains CVALUE, and BASE-addressed items,
where it contains TARI (table reference) for the BASE symbol.
"FLAGS'" contains

BIT 0: LIBRFLAG
BIT i: UDEFLAG
BIT 2: LOCFLAG

Pass 1 Buffer

The Pass 1 buffer is an array, BUFFA, containing characters packed
two by two. A byte pointer BUF P points to the current position in the
buffer, and another pointer AVAILABLE tells the number of available
characters. :

Output Line Buffer

The output line buffer is an array IBUFA, containing characters packed

two by two. A byte pointer, IBUFP, points to the current position.

ND-60. 059. 01

Scanned by Jonny Qddene for Sintran Data © 2010

- — -

f o e e m— e e _—

-~ o e -

2.3.4 Backtrack Stack

The backtrack stack is a ring buffer containing information on the

last 308 items used. An element has the form:

N1

N2

value/cvalue

mix

TARI

IBUFP

The first four locations correspond to the last four of the main table
element. It contains a snapshot of the main variables just before a
new variable is fetched from the Pass 1 buffer (by the GET subroutine).
When the routine RESET is called, this situation is restored.

The backtrack stack resides in an array, VBUFBEG.

+— VBUFBEG

«——|CURFLEM Pointing to the currently

last element

(element no.)

The variable GETCOUNT tells how many elements are available
at the moment.

ND-60. 059. 01

~_Scanned by Jonny Oddene for Sintran Data©2010

2-6

2.3.5 Subroutine Stack

Each time the subroutine ENTER is called, eight locations are saved
on a stack, in the array STBEG. A pointer STPNT points to the
first free location.

[1lrrr/r o STBEG

- STPNT

FITTTTIT < STEND

An element looks like:

D register (return)

X register

The six first locations
in the BASE field

By jump to the subroutine RETURN the saved X register is restored,
the saved D register is used for return address, and the six locations
are moved back to the BASE field.

ND-60.059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

2.4

The Variables

Vo-v7
LINK

'INDEX

LINK2
SAVTAD
IDEV
LDEV
ODEV
ERDEV
ICOMDEV
OCOMDEYV
ERBUSY

ERSTNO
ERNAME
STADR
LASTADR
NSTATE
NOLDSTATE
BUFP
AVAILABLE
CHAR
BCHAR
BYTE
ICRFLAG
DECFLAG
MACFLAG
FNUM
ORLAB
REGI
RELOP
BITNO
FMAX
THENTYPE
FTYPE

in the BASE Field

Area for local variables.
Return address for the bottom subroutines.

X register for the bottom subroutines.

Return address for next to bottom subroutines.

Save locations for TAD.

Input device.

List device.

Object device.

Error device.

Input communication device.
Output communication device.

Flag to prevent recursive call of the error
routines.

Current line no. after last label.

Last label name.

Start of statement routine

Last statement.

Statement syntax state.

Former value of NSTATE.

Character counter of PASS1 buffer.
Number of available elements.

Current character.

Buffered character.

Last control byte put into PASS1 buffer.
If set, carriage return is changed to space.
Decimal mode.

Processing assembly code.

IF-FOR label number.

OR label number.

Register of first expression in a relation.
Relation operator.

Bit number in bit test.

Last IF-FOR label number.

AND, OR. THEN or GO.

Information to FI-OD.

ND-60. 059. 01

___Scanned by Jonny Oddene for Sintran Data © 2010__

FSTEP .
FCONTROL
REGISTER
OPERATOR
OPER2
DISPL
SAMO2
PRESFLAG
SAMODE

BTARI
TPCHECK

FSTACK
TPOINT
FREE
N1i,N2
VALUE
CVALUE
TYPE
REIN
AMODE
VMODE
SLOCFLAG
LOCFLAG -
UDEFLAG
LIBRFLAG
TARI
CURELEM
GETCOUNT
IBUF
IBUFP
STPNT
PTARI

2-8

Step information.-

Control variable definition.

Primary register in an operation.

Used in GENERATE.

AD1, ADC.

Displacement value in DISP statement.
Saved SAMODE.

Set if the symbol is present in the table.

Declared variables will get this value as
their AMODE.

TARI for the BASE variable.

Check information, contents of the last used
location in the main table.

Start of the linked IF-FOR stack.

Pointing to current top of table.

Start of free list.

Symbol, five characters.

Basic element identification.

Constant value.

Main grouping of basic elements.

Size of variable: 1, 2 or 3 locations.

Addressing mode.

Variable mode.

Inside subroutine indicator.

Symbol with this flag set are killed at RBUS.
Symbol not defined.

Include mode.

Table reference.

Current element in the backtrack stack. _
Number of available elements in the backtrack stack,
Pointer to instruction buffer start.

Pointer (character relative) into instruction buffer.
Subroutine stack pointer.

For indirect reference through TARI.

ND-60.059. 01

Scanned by Jonny Oddene for Sintran Data-© 2010

3.

3.

1

2

ROUTINE LOGIC
Compiler Entry Points

The entry point NPL is used for initial start. All tables are cleared,
and the message "NORD PL version is written. :

The entry point ONLINE is used for restart. The device numbers
are set to the communication device. The symbol table is retained.
Error Handling

An error message is written, and for the most part control is returned
to NEWST. Fatal errors exit to ONLINE.

NEWST
p
Read first
item
Vari- MAC
Label Operator able |Statement Command code
: Check Copy
Set start operation line
Declaration l—
Search
Set start Clear table
BASE
ESARB
Executable
Go to
Check command
syntax
s
Go to
statement
ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010 e

3.

3

Statement Start

3-2

After each statement, the routine NEWST is entered, to determine
which statement should come next.

for inter statement syntax check.

A state table, HUFF, is used
A new state > 8 means error.

Before jumping to the statement routine, ENTER is called, with
return address to NEWST.

The HUFT table:

m BASE | ESAB | DISP | PSID | SUBR | RBUS fgleecut-
?ttart 0 1 10 2 10 3 10 13
g‘ASE { 11 0 11 11 1| 11 13
gllsp 2 2 | 12 12 0 12 | 19 (3
susp > 4| 13 5 13 13 0 3
IBnAls?Eal 4 14 3 14 14 14 14 13
hlocal s | 45 | 15 | 15 3 15 | 15 3
ND-60. 059. 01

Scanned-by Jonny Oddene for -Sintran Data © 2010

Error routines

Check against

Write common
text

Others

Errtable-

Errfatal

Write special
text

Skip to end of
statement

(NEWST)

Write special
text

Write location
number

(ONLINE)

ND-60. 059. 01

_________Scanned by Jonny Oddene for Sintran Data © 2010

3-4

3.4 Commands

The command LIB:

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

3.

5

3-5

Passli

The PASS1 subroutine is called from PICKP each time the Passi buffer
has become empty. Then PASS1 processes information, putting it into
the Passi buffer, until a comma or statement end (semicolon, carriage
return) is found. The information is packed as 8 bits bytes. Each
element consists of a control byte, which is a small number, with bit 7
set. Thereafter a character string (bit 7 never set), holding a symbol
or a number. The operands (:=, +, :=:,) are reduced to control
bytes only.

A descriptor table is used for the first classification. Symbols and
constants are checked through a state table.

Main Information Flow:
INBT
\
INCH
'Description
table
Operands
\ \
State Other
table processing
Control 7y Characters
bytes y v
XPACK PACKP
Pass 1

ND-60. 059. 01 buffer

Scanned by Jonny Oddene for Sintran Data © 2010

Scanned-by-Jonny Qddene for Sintran Data © 2010

LIBST

[

Initialize

foan

Read operand
And Or Neg.

Read next

No Statement
end?

Condition Yes

:0?/
RETURN

Get byte

No

Get command name

Count nestin

I

No

Proper
nesting ?

Check end of
statement

RETURN

__Scanned-by.Jonny Oddene for-Sintran Data-© 2010

i - Data ©
Scanned-by.Jonny Oddene for Sintran

N
()
(=]

1

3-6

In the descriptor table the four leftmost bits contain a switch number.
The rest contain either a control byte number or a relative label address.
-1 indicates illegal character.

Octal Char. Switch Byte Address
40 Space 0 RNEXT
41 ! -1
42 " 1 5 ref
43 £ 0 CHRS
44 3 -1
45 % 0 PERCENT
46 & 0 OPND
47 ! 0 STRING
50 (1 5 lpar
51) 1 5 rpar
52 - 0 STAR
53 + 1 5 plus
54 , ! 5 comma
55 - 2 5 minus
56 . 1 5 dot
57 / 2 5 div

60-71 Digits 0 OPND
72 : 2 5 colon
73) 1 5 stend
74 < 2 5 Ist
75 = 2 5 eql
76 > 2 5 gre
77 ? 1 5 quest

100 @ 1 5 comnd

101-132 Letters 0 OPND

133 s -1

134 \ 2 5 byte

Switch values: 0: Special processing
1: One character item
2: Possibly more than one character

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

— ——— = ——

Data.© 2010

Sc

Operand State Table:
Input T N
State A-7Z Q-a & £ - ‘others
copy [COopy

Start char. |char. octal |error |error |error |error
0 1 2 2 0 0 0 0

In symbol read, [read, | finish,|finish,|finish,|finish, |finish,
nsy check |check | reset |reset |reset |reset [reset
i i 1 i 0 0 0 0

read, |copy copy |inserl |finish, |finish,
In number | opask |ehar. | €TTOT | char. H |reset |reset
2 1 2 0 3 4 0 0

In fraction | . . |copy error | error |17Sert [finish, [finish,
part char. H reset (reset
3 0 3 0 0 4 0 0

After # error | SOPY error | error |error | ™ |error

char. char. -

4 0 5 0 0 0 5 0

In ex copy error | error |error - finish, | {inish,
P error | char. reset |reset

5 0 5 0 0 0 0 0

For the character constants (%, # £ and & # #£ .. . #4 conceptually
a state table exists, although it is coded slightly different.

Input
State # Others
copy char. ,
After read and
#* copy next
0 1 0
output output 5CH2
ﬁtz 5DCON and copy char.
e e
1 2 0
After finish copy char,
#E A
2 0 2

Scanned-by Jonny Oddene for Sintran Data © 2010

ND-60. 059, 01

PASS 1

3-8

Check for
MAC code
Read
characters
Change to Description
. table
% * Operator 7= | Operands
Ignore Copy Check for Read Read
line "MAC -code double char. characters characters
No
Yes

No/////’/or

statement

Scanned by Jonny-Oddene-for-Sintran-Data-©-2010—

ND-

60. 059. 01

end?

Yes

Set pointers

RETURN

3-9

INCH

This subroutine is called from PASS1 to read a character. The parity
bit is reset. The following characters are treated specially:

Tab : To space

CR : If online, a line feed is given
LF . Ignored

Tape feed : Ignored

End of medium (27): Go online

The text is copyed to the list device.

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran.Data © 2010

3-10

Executable Statements

Main information flow:

L Pass 1 buffer j

PICKP

GET

| L
DATAXPR

RP

DATALIST

Special

EXPR statements

—
GENIF

1

GENERATE

—— -

SYMBUT, COPYC, OUTI,
OUTIZ2, OUTTEXT, OCTU

L Instruction buffer —I

Scanned by JoiEhg Qeffess for Sintran Data © 2010

3.6,

3.6.

1

2

Arithmetic Statements

ARITS calls EXPR.

JF Statement

The conditional jumps go to "labels" starting with a comma, and
thereafter four octal digits. The digits are converted from the number
FMAX, which is incremented for each label generated. Example:
,0000 ,0001 ,0002. FMAX is also used by FOR statements. The
nesting of IF and FOR is performed by the subroutines PUSHF and
POPF, operating on a linked stack in the main table. FSTACK points
to the first element.

Each time a conditional jump is to be generated, the subroutine
GENIF is called, outputting a conditional jump if possible, or a SKP
followed by a JMP.

ND-60. 059. 01

Scanned-by-Jonny-Oddene-for Sintran Data © 2010

IF

Initialize

EXPR 1

BIT-REG.
?

Bifor t

Relation Others
- Check for Get
NBLT bit—no. EXPRT . (ERROR >
Get next
Yes Get label
Get label
GENIF
Yes
No, THEN
GENIF Get label
PUSHY GENIF
LEAVE LEAVE

Scanned by Jonmn Qddene for Sintran Data © 2010

3-13

3.6.3 ELSE - FI Statements

The ELSE - FI generate labels and jump to labels. If the last statement
before the ELSE was an unconditional GO, no jump will be generated
i.e. ELSE will be dummy.

ELSE

POPF

No

ERROR

Last
statement
GO?

No

Yes

Generate
JUMP

L

Generate
label~def.

|

POPF

—

(LEAVE)

ND-60. 059. 01
o Scanned by Jonny Oddene for Sintran Data © 2010

3-14

I

POPF

(ERROR)

Generate
label-def.

{ LEAVE)

ND-60. 059. 01
Scanned by Jonny Oddene for Sintran Data © 2010

3.6.4 FOR Statement

The FOR statement generates many different sets of code. Normally,
it generates a label for return jump and a jump till after the correspond-
ing DO. :

The variable FTYPE has the values

5DOX - Register as stepping value
5DOVAR - Variable as stepping value
5DOXCOUNT - X register as counting value

5DOVCOUNT Variable as counting value

The subroutine PUSHF pushes some information into the same nesting
stack as IF - FI use. The information is retrieved at OD.

ND 60. 059.01

Scanned-by Jonny Oddene for Sintran Data © 2010 —

FOR

RP

Variable ?

,,7?,&7 |
5DOVAR
KASET |
‘ GET ‘
EXPR 1
i
[DO? Yes]
SET 7
5DOX No 5DOVCOUNT
RESET ‘
RESET .
I {
i
EXPR {
GET
TO - B DO
STEP |
SET Check
STEP %
Read
o 5DOXCOUNT
Label Label
EXPRT
GENIF
Read
non
PUSF

LEAVE
ND-60. 059. 01

Scanned-by-Jonny-Oddene-for Sintran Data ©2040

3-17

3.6.5 ‘OD Statement

The OD statement generates a jump back to FOR. In case of
a FOR - TO construction, the stepping value is modified, else a
count and test for zero are generated (JNC or MIN).

ND-60. 059. 01

~_Scanned by Jonny Oddene for Sintran Data©2010

3-18

e}
POPF
FTYPE:
5DOVAR 5DOX 5DOVCOUNT 5DOXCOUNT
Generate Get Check for
LDA register Gen. MIN X-register
T
|
Generate
Yes JNC
No
RETURN
Generate
ADD, RADD
5DOVAR 2 S0
Yes
Generate
STA
Generate
JMP
Generate
label

(RE TURN)

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

3.6.6

3-19

CALL, GO, and LABEL Statements

The CALL statement generates a JPL to the subroutine. If the entry-
point is not defined, it is assumed to be global (generating JPL I (ENTR)).

The GO statement generates a JMP to a label. If the label is not defined,
it is assumed to be local (generating JMP LABEL).

The LABEL statement defines a label, generating LABEL. = %.
The undefined -flag is zeroed in the symbol table entry, and so is the
library flag for conditional compiling.

CALL, GO, and IF statements call a common subroutine, CALGO.
This subroutine reads a label reference. It checks for a preceding

FAR, then flagging an indirect jump, but without setting the symbol
permanently external. .

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010 _ _

3.6.

7

Executable Expressions

3-20

This subroutine is called from Arithmetical statements, and IF and

FOR statements.

EXPR -
EXPRT -

It has two entrypoints:

setting A, AD or TAD as defaulf register

setting T as default register

The subroutine checks the syntax, normally generating an instruction
each time an operator is found (calling GENERATE).

The main program logic is controlled by a state label.

Input Const. / .
Con.st./ variable |Register | Array Arithm. GOSW Others
State variable [", 7, operator
Start Set Look for Set Set Check Set .A Set.
. last ref. : . register (register
register register [register |[for MIN
set reg. generate |return
0 2 2 1 2 2 [jumpS 0 0
After Set Generate
operand operator | jumps Return
| 2 0 0
After Set x:= [Check forjGeneratq Generate,/Generate
operator | Generate|generate|AD1/ADC|index Generate|generate |return
' generate |generate jumps
2 1 3 1 2 1 1
After
"o Generate| Generate
3 { 3

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

Scanned by Jonny Oddene for Sintran Data © 2010

EXPR EXPRT
3-21
Set A Set T
(\L
RP
Check for 0-
reg. and ". "
HUFF -table
Var. Var. array Reg. Operand GOSW
Find REIN of Set register Check MIN RADD SA DP
last reference
Set 0-register Read label
A-reg.?
Generate
JMP
Set A, AD
or TAD
Set :=
i
VAR.2 Var. 2 Array 2 Reg. 2 Op. Varp. 3 ¢ Var.
Set X:= Generate Check Check
: index adi/adc DISP
Generate
access Generate
ND-60. 059. 01

3.

7

LT

7.

1

3-22

Declaration Statements

BASE - DISP - SUBR

These statements control the addressing mode (AMODE) of the
enclosed variables. The variable SAMODE tells which value AMODE
should have when a variable is declared.

In RBUS all local variables are removed, calling PCLEAR.

Declaration of Variables: INTEGER, DOUBLE, and REAL

The routine checks for ARRAY and/or POINTER, adjusting the
variable's mode (VMODE). Then the list of variables is processed.
The variables are checked for double definition, and the possible
initialisations are processed. The processing is different for DISP
variables. :

The following occurrences are used in a switch:
Comma .
Statement end
Equal sign D=

Load ro=
Left bracket . (

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

3-23

‘\ 1811 B1ed

AR A O0-O50--A3

IND7OU,. UJgog . UT

Scanned by Jonny Oddene for Sintran Data © 2010

(¥o9yD
“juowale eyed
SoX
juoweorldsIp .. ON ¢)
MON / *
18300 3 _ B 18100 0 ‘0 ‘0
— JVN x = JINVN = JINVN = JAVN = JINVN = JINVN ‘= TINYN
Jed|q Jedj peo1 jenbaQ Tvadd Wooa "wo)
dyd
21q®) (oquis
0] Juswaly
'Jop a1qnop
103 {09YyD
B dyd
AAONA
aulwaala(g

b

3.

7.

3

SYMBOL Statement

324

;

Set
default = 0

—

(RETURN)
Scanned by Jonmy for%

N

Read
symbol

l

Check for
double def.

Comma No

or statem,

Equal to
default

Equal to
data
expression

Output
line

Yes

Check state-
ment end

Lo |

3R Data © 2010

3.7.4

3-25

Data Expressions

The subroutine DATAXPR is called when a data expression is supposed
to occur in an executable expression (called from RP) or in a declaration.
The subroutine can treat:

a) Double constants

b) Real constants

c) Integer expressions - where the operators can occur:
+, =, *»and \

The syntax is checked by a state table:

Input Integer
Operator constant Variable Others
State or symb
Start Store Execute Outpu't value
operator + variable

0 1 2 3
After Execute Outpu.t value
operator + variable

1 2 3
After Store Return,
constant |operator type=5 const.

2 1 0
After Store Return,
variable |operator type=5 const,|

3 4
After Output Output
var. and t and tand
operator value variable

4 3 3

ND-60. 059, 01

anmed_by_Jonny_QddeneiOLSiLnranQaia@ZOiO— -

3-26

DATAXPR
GET
Double Real
constant constant Others
Rein =2 Rein :=3
State
table
Copy
characters
{ LEAVE)
Others
T
Save '
operator Execute Set + Set type
| |
i ' O : .
| utput RE TURN
‘ variable
r

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

3.

3.

3.

8

8.1

8.2

3-27

Element Fetching Routines
RP

The main purpose of this routine is to fetch an operand in an executable
expression. The operand can be a variable, constant, register or data
expression (in quotes). The routine determines the value of TYPE -
the main grouping of elements, returning if also in the A-register.

If a pointer enclosed by quotes (''point') is found, the addressing mode
is modified to direct addressing.

The current level of the backtracking stack is recorded at the beginning
and inserted at the end, so that a RESET after RP will reset to the
situation when RP was called. ‘

A special entry point, RP CHECK, assumes the expected type to be in
the A-register at enfry, giving error if the resulting type is not the same.

The result is placed inthe output buffer.

See the flowchart on page 3-25.

GET

GET is the routine which gets an element from the pass 1 buffer.

If the element is a symbol, it is looked up in the symbol table. If
the type is found to be a MAC mnemonic, the symbol is prefixed by
a comma and looked up anew, to avoid collisions wit MAC symbols.

QOctal and decimal constants are assembled and put into CVALUE;

the same for # and # # character constants. Double and real con-
stants and strings remain inthe pass 1 buffer and may later be fetched
by the COPYC routine.

The entry point GETCHECK is used when a certain value is expected,
being placed in the A-register. If non correspondence, an error
message is given.

For each call of GET another element is added to the backtrack stack.
For each RESET an element is removed, restoring the situation
before GET.

If a constant = 0, N2 is set# 0, to flag that it may be interpreted as
the zero register.

See the flowchart on page 3-26.

ND-60. 059. 01

____Scanned by Jonny Oddene for Sintran Data©2010

3-28

T RPCHECK

GET

Save state

Determine
type

GET

To output
No buffer

Pointer ?

Yes

Dataexpr.

GET

No

Dataexpr.

Modify
vmode

Check "

Set back-
track level

|

Check type

RETURN

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

NU QLAY

anyea
994D
219®] 1oquiAs
[- urey 03 UOTJBUWLIOJU]
0 # 2N
1UBISUOD
0# gN 'S8V
3 |
q
& |
= u1d = ule onrea = ase = 9s® 1oquAs
¢ = w1y ¢ = uley peaYy 01 = d 8 = 9s®yY S1qWaSSY
180Yd alqnoq &0 “IBYD 1ew1oa(q "190g5x 10quIAy -
oN pueaed(
914q 1013100
11un dos
OB}
-0®(q 198
0=V
MOIHOLAD

ND-60. 059. 01

— Scanned-by Jonny Oddene for Sintran Data©2010—

3-30

Table Routines
CLTAB

This routine resets the whole symbol table. It links the fixed
symbols; therefore it must be called when the compiler is started
(called from MCLEAR).

SEARCH

The symbol table is searched for a symbol, which is placed in N1
and N2. The last 3 bits in the symbol is used as an hash index.

If the symbol is not found, an entry for it is allocated in the table,
where it gets the type 5 udef.

ALLOCATE

If the free-list is non-empty, an entry is fetched from it; else it is
taken from the top of the symbol table. The location TP CHECK
contains the value of the last word in the symbol table. If it has
been changed, the table has been destroyed (overlap from user
program.

PCLEAR
This subroutine is called at RBUS, removing all local variables
from the symbol table, generating YKILL for them. It scans all

the lists, looking for entries with LOCFLAG set. If a local symbol
is undefined, an error message is written,

CODE - DECODE

CODE puts information into a table element. TARI points to the
element.

If it is a constant (SYMBOL), CVALUE will be saved. For variables
and arrays CVALUE contains TARI for the BASE variable in case of
base addressing.

DECODE unpacks the information the same way.

ND-60. 059. 01

Scanned.by Jonny Oddene for Sintran Data © 2010

3.9.6

3.9.7

3.10

3.10.1

3-31

PUSHF - POPF

These routines operate on the IF-FOR-stack, making the proper
nestings. The [F-FOR-stack is a linked list in the main symbol
table. If POPF is called and the list is empty, an error message
is given, '

An element has the form:

link

FTYPE
FNUM
FCONTROL
FSTEP

PUSHVAR - RESET

These routines operate on the backtrack stack (see Section 2.3.4).
They use CODE - DECODE for putting information in and out.
PUSHVAR is called from the beginning of GET, recording the state
before GET was called. RESET is called several places in the
compiler. :

Code Generating

GENIF - Generate a conditional Jump

The subroutine is called at IF and FOR statements, generating a
conditional jump if possible, otherwise a skip and jump.

The information is transferred to GENIF through the following global
variables: :

RELOP - relational operator

BITNO - used at bit-skip

REG! - the register to the left of the relational operator
REGISTER - the register to the right of the relational operator
THENTYPE - 5THEN, 50R, 5AND, 5GO

FNUM - label number

ORLAB’ - label number in case of OR

TARI

ND-60. 058. 01

_Scanned by Jonny Oddene for Sintran_Data © 2010

3.10.2

3-32

The array AXTAB is used to determine if conditional jumps can
be used.

Bit 1: Bit 0:
Operator X-reg. A-reg.

> 0 0

>= 1 1 JXN, JAN
= 0 1 JAF

>< 1 1 JXZ, JAZ
<= " 0

< 0 1 JAP

If AXTAB is equal to zero for some operators (> and < =), the source
and destination register must be swapped, and a different operator must
be used. The proper operator is found in the array MODREL.

See the flowchart on next page.

GENERATE - generate an Instruction

This routine is called each time an instruction is to be generated.
It is called from several places in the compiler.

The information is transferred to GENERATE through the following
global variables: -

REGISTER - primary register
OPERATOR - additional information - ADC, ADi, CM1, CM2
TYPE
REIN - REAL, INTEGER, DOUBLE
VALUE
CVALUE
~ AMODE - addressing mode: BASE, PSID
VMODE - variable mode: variable, array, pointer

The instruction is built by putting parts of the instruction into fixed
places in an instruction buffer, IBUFA.

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

GENIF O

No
3-33
Yes
Invert
condition
Yes
No
Set mode
Arith: RELOP: ADRSKIP BITREG. BITSKIP
A,X TAD Others [[
l CARRY 5 const. =:
Check as register type, Bitno.
COND. No. =, I
JUMP? l l
Yes Set T-register 0 =: type
Modify Set BSKP
operators and register
Generate
SK|P
g0 =:
operator
_ THEN TYPE:
THEN: AND, O GO:
Generate Label to
___jump buffer No
No Yes
Label
out
Yes
Label
out Go-label
to huffer
RE TURN [
v Generate

jump

3-34

The format is like this:

LDOA [,X| I!,B VAIRIA
cdpry| sA|l |po |ADt

SK|P ST DA FQL
BS|E T] OWE DD 0010170
AAX 00j0 01
BSKP ZRO |8 SKK

S AD ZIIN[SHR 10

The characters are inserted, 2 or 4 at a time, using the displacements
Ti, T2, .-+ 0or DT1, DT2,

The routine GENERATE determines which type of instruction it is to
make. If TYPF lor instance i{s a constant, it will either generate a
memory reference instruction, an argument instruction, or a register
operation (only for values -1, 0, or 1). In the latter case the array
OPT! is used, using the value and the operator as indices.

alue -1 0)
Operato -
= = COPY CM1 | COPY COPY ADI
+ o+ RADD CM1 | RADD RADD AD1
- - ’ RADD AD! | RADD RADD CM1

For memory reference instructions the array MODTAB is used to
determine the addressing mode of the instruction. AMODE and
VMODE are used as indices in the array. An array element contains
some bit flags: '

Bit 0: ,B
Bitt: I
Bit 2: X
Bit 3: (

Bit 4. Base modification

A negative value means error.

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

MODTAB:

3-35

MODE
- WMODE Local Global Base Disp. X disp.
Variable - I (,B — BAS , B X
Array I,X (| I,X(,X ,B-BAS| ,X ,B Error
Pointer I Error I, B-BAS|I,B Error
Ar.ray Error Error ,X [,B-BAS| ,XI,B Error
pointer

See the flowchart on next page.

Object Output

The code generating routines (GENERATE, declaration processors)
put characters into the buffer IBUFA, either direct by using displace-
ments, or by using subroutines (OUTI, OUTI2, OCTU, --:). When
the necessary information is ready, the whole line is output to the
object device by calling LINUT. Trailing spaces are ignored. Then
the buffer is cleared (filled with spaces).

The following entry points exist:

LINUT - output line and clear buffer

CLIBUF - clear instruction buffer

CLINST - clear instruction buffer and position the buffer
pointer to T7 (operand place)

OUTCH - output one character with even parity

Auxiliary Routines

ENTER - LEAVE

The routines operate on the subroutine stack (see Section 2.3.5).

__Scanned by Jonny Oddene for Sintran Data © 2010

ND-60. 059. 01

CONST:T

Check
REIN
\ 3-36
Clear
buffer
Arithm. l Operator
BITREG. ‘ REG.: ATXB LPDN
Set
operator No
Bitr. Set
Yes
operator
Geneljate Regop.
arg. inst. Output
evalue
_ , DCONST
: RE TURN RﬁONST
VAR Set mode
Check
jumps
Set addressing
mode
I Regop.
Get instr. ’
code __j>
UNOP
RE TURN Yes
. Skip?
-No
No
Get
relation
CM2
Bitrs.
Check for
Get " extra op.
ZRO/ONE
RE TURN Set source/
dest.
ND-60. 059. 01
RETURN

Scanned by Jonny Qddene for Sintran-Data- ©-2010

3.12.2

3.12.3

3.12.4

SYMBUT

3-37

Symbol Output Routines

FNAME - A number in A is converted to octal and prefixed
by a comma, making an internal label for IF-FOR.
The instruction buffer is cleared beforehand.

- The symbol in N1 - N2 is placed in the instruction
buffer.

LABUT - A label is assumed to be in the instruction buffer.
The characters =* is then inserted, making a label
definition, then outputting the line.

COPYC - An element is copied from the pass 1 buffer to the

instruction buffer, typically a string.

Text and Number Routines

OUTTEXT -~ The A-register points to a standard MAC -string to
be copied to the instruction buffer.

OCTU - A number in the A-register is converted to octal
and put into the instruction buffer.

Character Input/Qutput Routines

OUTI - One character to the instruction buffer.

OUTIZ - Two characters to the instruction buffer,

PACKP - One byte to the pass 1 buffer.

XPACK - One control byte (bit 7 set) to the pass 1 buffer.
LOADBYTE - T points to string start, X contains the byfe count.

One character is fetched to the A-register, like the
instruction LBYT in NORD-10.

PICKP - One character is fetched from pass 1 buffer. If
the buffer is empty, PASS1 is called.

REBUF - The character fetch pointer in the PASS1 buffer
is backspaced.

ND-60.059. 01

Scanned by Jonny Oddene-for-Sintran-Data-© 2010

3.12.5

3-38

Searching Routines

Two routines are used to fine the element number of wanted element
in an array. The location after the call points to the array, and the
value is in the A-register. The index is returned in the A -register.
The search is terminated when the match is found or when a negative
number has occurred. Typically the arrays to be searched are
terminated with -1.

There are two entry points:
SRCHARR - Search for A equal to element.

SRCHINT - Search for A between the leftmost byte and the
rightmost byte of the element.

Name searching routine, GETNAME.

The location after the call points to the start of an array, the elements
of which containing three words.

Value

Name 2

Name 3

The routine searches for match between the A-register and the value
in the first word of the element. If match is found, the name is
returned in AD. If not (negative value is found), error is reported.

ND-60. 059. 01

Scanned by Jonny Oddene for Sintran Data © 2010

.1

.2

MAINTENANCE

Generating

As the compiler compiles itself, some assembly-version must exist,
either the original hand-compiled (NPS) or a version which has been
compiled. If a binary version is provided, generating a new compller

version is like this:

- Compile the compiler (NPC)

- Assemble the object code

Three symbols are undefined:

EXX - Exit from the compiler at (@ EOF
(MCALL 0 for TSS)
L,INBT - Standard INBT

,OUTB - Standard OUTBT
There are two main entry points:

NPL - Start address
ONLIN - Restart address

Modifying the Compiler

The present version generated NORD-1 code. It will probably be
useful to generate special NORD-10 and NORD-20 code. Then,
mainly the routine GENERATE must be changed, because this routine

‘contains the checking for legal operations and code generating. To

obtain magnitude skip in NORD-10 the routine GENIF must also be
modified,

As the MAC assembler may be equipped with more standard symbols,
these should be added to the MAC-symbol table of NORD-PL to avoid
collisions.

The I/0 interface is performed by standard INBT/OUTBT. It can

easily be used for co-routine interface to MAC, or for implementing
macros.

ND-60. 059. 01

Scanned by Jonny Oddene-for-Sintran Data-©2010——

Scanned by-Jonny-Oddene-for-Sintran-Data ©20410—

°
®
§:: A/S NORSK DATA-ELEKTRONIKK
o ii: Lorenveien 57, Oslo 5 - TIf. 21 73 71
®

COMMENT AND EVALUATION SHEET

ND-60. 059. 01 NORD PL
PROGRAM DOCUMENTATION

In order for this manual to develop to the point where it best
suits your needs, we must have your comments, corrections,
suggestions for additions, etc. Please write down your comments

on this pre-addressed form and post it. Please be specific
wherever possible.

FROM:

Scanned-by.Jonny-Oddene for Sintran-Data © 2010

T

Scanned by Jonny Oddene for Sintran Data © 2010

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 39 16 01 TELEX: 18661

Scanned-byJonny-Oddene-forSintran-Data-© 2040

af

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068

